Connect with us

Solar Energy

Common solar tech can power smart devices indoors, NIST study finds

Published

on

Common solar tech can power smart devices indoors, NIST study finds

Any time you turn on a light at home or in the office, you are expending energy. But what if flipping the light switch meant producing energy too? We usually think of solar, or photovoltaic (PV), cells fixed to roofs, converting sunlight into electricity, but bringing that technology indoors could further boost the energy efficiency of buildings and energize swaths of wireless smart technologies such as smoke alarms, cameras and temperature sensors, also called Internet of Things (IoT) devices.

Now, a study from the National Institute of Standards and Technology (NIST) suggests that a straightforward approach for capturing light indoors may be within reach. NIST researchers tested the indoor charging ability of small modular PV devices made of different materials and then hooked up the lowest efficiency module – composed of silicon – to a wireless temperature sensor.

The team’s results, published in the journal Energy Science and Engineering, demonstrate that the silicon module, absorbing only light from an LED, supplied more power than the sensor consumed in operation. This outcome suggests that the device could run continuously while lights remain on, which would do away with the need for someone to manually exchange or recharge the battery.

“People in the field have assumed it’s possible to power IoT devices with PV modules in the long term, but we haven’t really seen the data to support that before now, so this is kind of a first step to say that we can pull it off,” said Andrew Shore, a NIST mechanical engineer and lead author of the study.

Most buildings are lit by a mix of both the sun and artificial light sources during the day. At dusk, the latter could continue to supply energy to devices. However, light from common indoor sources, such as LEDs, spans a narrower spectrum of light than the wider bands emitted by the sun, and some solar cell materials are better at capturing these wavelengths than others.

To find out exactly how a few different materials would stack up, Shore and his colleagues tested PV mini modules made of gallium indium phosphide (GaInP), gallium arsenide (GaAs) – two materials geared toward white LED light – and silicon, a less efficient but more affordable and commonplace material.

The researchers placed the centimeters-wide modules underneath a white LED, housed inside an opaque black box to block out external light sources. The LED produced light at a fixed intensity of 1000 lux, comparable to light levels in a well-lit room, for the duration of the experiments.

For the silicon and GaAs PV modules, soaking in indoor light proved less efficient than sunshine, but the GaInP module performed far better under the LED than sunlight. Both the GaInP and GaAs modules significantly outpaced silicon indoors, converting 23.1% and 14.1% of the LED light into electrical power, respectively, compared with silicon’s 9.3% power conversion efficiency.

Coming as no surprise to the researchers, the rankings were the same for a charging test in which they timed how long it took the modules to fill a half-charged 4.18-volt battery, with silicon coming in last by a margin of more than a day and a half.

The team was interested in learning if the silicon module, despite its poor performance relative to its top-shelf competitors, could generate enough power to run a low-demand IoT device, Shore said.

Their IoT device of choice for the next experiment was a temperature sensor that they hooked up to the silicon PV module, placed once more under an LED. Upon turning the sensor on, the researchers found that it was able to feed temperature readings wirelessly to a computer nearby, powered by the silicon module alone. After two hours, they switched off the light in the black box and the sensor continued to run, its battery depleting at half the rate it took to charge.

“Even with a less efficient mini module, we found that we could still supply more power than the wireless sensor consumed,” Shore said.

The researchers’ findings suggest that an already ubiquitous material in outdoor PV modules could be repurposed for indoor devices with low-capacity batteries. The results are particularly applicable to commercial buildings where lights are on around the clock. But how well would PV-powered devices run in spaces that are only lit intermittently throughout the day or shut off at night? And how much of a factor would ambient light pouring in from outside be? Homes and office spaces aren’t black boxes after all.

The team plans to tackle both questions, first by setting up light-measuring devices in NIST’s Net-Zero Energy Residential Test Facility to gain an understanding of what light is available throughout the day in an average residence, Shore said. Then they’ll replicate the lighting conditions of the net-zero house in the lab to find out how PV-powered IoT devices perform in a residential scenario.

Feeding their data into computer models will also be important for predicting how much power PV modules would produce indoors given a certain level of light, a key capability for cost-effective implementation of the technology.

“We’re turning on our lights all the time and as we move more toward computerized commercial buildings and homes, PV could be a way to harvest some of the wasted light energy and improve our energy efficiency,” Shore said.

Research Report: “Indoor light energy harvesting for battery-powered sensors using small photovoltaic modules”

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

New Layered Perovskite Structure Explored for Enhanced Optical Properties

Published

on

By

New Layered Perovskite Structure Explored for Enhanced Optical Properties


New Layered Perovskite Structure Explored for Enhanced Optical Properties

by Riko Seibo

Tokyo, Japan (SPX) Apr 19, 2024






Perovskites are critically important in the field of materials science due to their distinct and varied properties arising from their unique crystal structure. These properties have potential revolutionary applications in advanced technology areas. A method to harness these properties involves precise manipulation of defects within the perovskite structure, such as missing atoms or substituting one type of atom for another.

In the realm of oxide chemistry, it’s well-established that such defects in oxides can self-organize within the crystal structure when they reach a certain threshold, leading to enhanced material properties. While this phenomenon of defect ordering is well-documented in perovskite oxides, it has not been as prevalent in hybrid halide perovskites, which consist of an organic component, a metal, and a halogen.



A recent study highlighted in ACS Materials Letters reveals findings by Associate Professor Takafumi Yamamoto and his team at Tokyo Institute of Technology, who discovered a novel defect-ordered layered halide perovskite. The research builds on earlier work where the introduction of thiocyanate ions (SCN-) into the FAPbI3 lattice led to structured defect formations. Dr. Yamamoto suggests, “Increasing the SCN concentration might amplify the formation of these defect structures, similar to those observed in vacancy-ordered oxide perovskites.”



The research involved synthesizing FAPbI3 in powder and crystal forms, using specific ratios of SCN-. When a high enough SCN- ratio was used, the resulting perovskite was FA4Pb2I7.5(SCN)0.5. This compound displayed organized defects throughout its layers-more so than its predecessor, FA6Pb4I13.5(SCN)0.5, where fewer defects were organized.



The study identifies this material as part of a ‘homologous series’-a sequence where systematic alterations to the chemical formula yield predictable changes in properties, here observed as variations in the optical bandgap correlated with defect concentration.



“This marks the first instance of a homologous series based on defect ordering in hybrid organic-inorganic perovskites,” notes Dr. Yamamoto. “Our findings set a foundational strategy for manipulating defect structures to adjust the optical properties of perovskites, offering a promising avenue for materials science innovation.”



The implications of this research are significant, potentially paving the way for new perovskite materials with tailored properties for future technological applications.



Research Report:FA4Pb2I7.5(SCN)0.5: n = 3 Member of Perovskite Homologous Series FAn+1Pbn-1I3n-1.5(SCN)0.5 with Organized Defects


Related Links

Tokyo Institute of Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Solar energy adoption challenges in rural Ethiopia

Published

on

By

Solar energy adoption challenges in rural Ethiopia


Solar energy adoption challenges in rural Ethiopia

by Clarence Oxford

Los Angeles CA (SPX) Apr 19, 2024






Despite decreasing costs and increasing accessibility of solar home systems, significant obstacles hinder their widespread use in remote areas of developing countries, such as Ethiopia, where they could greatly improve health and education.

Inexpensive, yet uncertified and inferior solar panels, along with limited government engagement in rural energy transition, impede access to dependable electricity for these communities.



When homes do incorporate solar energy, it replaces harmful kerosene lamps, offering a healthier, eco-friendly alternative and enabling children to study after dark.



“Understanding the dynamics of renewable energy adoption in rural sectors of the Global South is crucial,” said Yujin Lee, a doctoral student at Cornell University’s Department of City and Regional Planning and first author of a related study in Energy Policy.



Chuan Liao, the study’s senior author and assistant professor in the Department of Global Development at Cornell, emphasized, “The global shift to renewable and clean energy sources must include remote and rural populations in the developing world.”



Ethiopia’s national electrification strategy aims to power all homes within 25 kilometers of the grid by 2030. Those further away are slated for long-term off-grid solutions.



However, the prevalence of low-quality solar panels, which often fail and contribute to environmental waste, poses a barrier to adoption. Additionally, the infrequency of government visits to rural, off-grid or road-less villages leads to misinformed policies.



“Government reports often do not reflect the true situation in rural areas,” noted Lee, who found actual solar adoption rates to be markedly lower than official claims.



Lee advocates for increased governmental presence in rural communities, enhanced public engagement in energy management, and improved communication between governments, private sectors, international organizations, and end-users to support sustainable energy solutions.


Related Links

Cornell University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams

Published

on

By

The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams


The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams

by Hugo Ritmico

Madrid, Spain (SPX) Apr 19, 2024






Researchers from Politecnico di Milano have identified floating solar photovoltaics (FPV) as a viable alternative to traditional hydropower in meeting Africa’s energy goals, according to a new study published in Nature Energy. The study shows that FPV installed at existing major reservoirs could generate 20-100% of the electricity projected from planned hydropower dams across Africa.

The research, conducted using a comprehensive energy planning model, reveals that FPV is not only cost-effective compared to other renewable resources but also plays a crucial role in Africa’s energy future. “Floating solar has emerged as cost-competitive and could potentially eliminate the need for many new dams,” stated Wyatt Arnold, the lead author of the study.



A detailed analysis of the transboundary Zambezi watercourse indicated that capital investments for new dams could be more effectively utilized by constructing fewer reservoirs and augmenting them with floating solar panels. This strategy could decrease interannual variability in electricity supply by 12% and enhance resilience against long-term droughts exacerbated by climate change.



“Adopting floating solar can provide developing economies with a stable energy supply less susceptible to hydrological changes,” explained Prof. Andrea Castelletti. “Additionally, it mitigates adverse effects on downstream communities and river ecosystems compared to new dam projects.”



The study also underscores the significance of integrated resource planning and the need to consider transboundary effects in sustainable development. It promotes multisector modeling that integrates energy, agriculture, environmental protection, and economic growth within river basins.



Prof. Matteo Giuliani noted, “The strategic deployment of floating solar might outweigh potential drawbacks on reservoir uses like fishing or recreation. Yet, ongoing enhancements in FPV technology and effective planning are essential for its responsible implementation.”



While floating solar offers substantial environmental benefits, the study acknowledges challenges in technology and social acceptance that may limit its deployment. Nevertheless, these challenges are likely to be less impactful than the negative consequences of new hydropower projects, which can disrupt river ecologies, displace populations, and increase regional conflicts over water use.



Research Report:Floating solar emerges as a sustainable energy solution for Africa’s future


Related Links

Politecnico di Milano

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.