Connect with us

Solar Energy

Engineers design battery to power flying cars

Published

on

Engineers design battery to power flying cars

Engineers at Penn State published plans Monday for a battery prototype they said is capable of powering flying cars.

“I think flying cars have the potential to eliminate a lot of time and increase productivity and open the sky corridors to transportation,” lead author Chao-Yang Wang said in a press release on the study, published in the journal Joule.

“But electric vertical takeoff and landing vehicles are very challenging technology for the batteries,” said Wang, director of the Electrochemical Engine Center at Penn State.

In the last couple of years, several prototypes have emerged — including from companies in South Korea, China, Slovakia and Japan — which incorporate technology from helicopters and cars to create a hybrid vehicle of sorts.

The prototypes include SkyDrive’s SD-03 vehicle that was tested in August, KleinVision’s AirCar that could be for sale as soon as this year and Xpeng Motors’ Kiwigogo vehicle that debuted at last year’s Beijing International Automotive Exhibition.

While some prototypes have included wheels, they all incorporate spinning rotors to facilitate takeoff and landing, including the air taxi shown off last year by Hyundai and Uber, which is basically a small helicopter.

While the AirCar runs on liquid fuel, the others are at least partially powered by electric — which means they require powerful batteries to fly.

In the new paper, Wang and his research partners established a variety of technical requirements for the batteries of electric vertical takeoff and landing vehicles, or eVTOLs.

In order to get a flying car off the ground, an electric battery must be able to deliver a lot of power and fast.

“Batteries for flying cars need very high energy density so that you can stay in the air,” Wang said. “And they also need very high power during take-off and landing. It requires a lot of power to go vertically up and down.”

Additionally, a flying car battery must ideally be able to be quickly recharged. Unlike most flying vehicles, eVTOLs will likely be taking off and landing rather frequently.

“Commercially, I would expect these vehicles to make 15 trips, twice a day during rush hour, to justify the cost of the vehicles,” he said. “The first use will probably be from a city to an airport carrying three to four people about 50 miles.”

In the lab, researchers tested the performance of a pair of energy-dense lithium-ion batteries capable of delivering the kind of power needed to sustain a 50-mile, 5- to 10-minute eVTOL trip.

The experiments showed the batteries were good for 2,000 fast-charges over the course of their lifetimes.

Tests involving batteries the team is developing for electric road vehicles — which are designed to offer a longer driving range with a faster charging time — showed heat is key to preventing lithium spikes, which can damage batteries and lead to dangerous battery failures.

To avoid this, Wang and his colleagues were able to rapidly heat the batteries by incorporating nickel foil into the design.

Researchers found suitable heating also allowed the batteries to deliver a rapid burst of power — the type of discharge required for take-offs and landings — more efficiently.

“Under normal circumstances, the three attributes necessary for an eVTOL battery work against each other,” Wang said. “High energy density reduces fast charging and fast charging usually reduces the number of possible recharge cycles. But we are able to do all three in a single battery.”

It’s easy to rapidly charge a battery that’s nearly drained, but frequent takeoffs and landings will require rapid charging of half-full batteries — a more difficult task. However, the latest research suggests sufficient heating can solve this problem, too.

“I hope that the work we have done in this paper will give people a solid idea that we don’t need another 20 years to finally get these vehicles,” Wang said. “I believe we have demonstrated that the eVTOL is commercially viable.”

Related Links

Powering The World in the 21st Century at Energy-Daily.com

Thanks for being here;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor

$5 Billed Once
credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



ENERGY TECH
Compound commonly found in candles lights the way to grid-scale energy storage

Richland, WA (SPX) Jun 06, 2021


A compound used widely in candles offers promise for a much more modern energy challenge – storing massive amounts of energy to be fed into the electric grid as the need arises.

Scientists at the U.S. Department of Energy’s Pacific Northwest National Laboratory have shown that low-cost organic compounds hold promise for storing grid energy. Common fluorenone, a bright yellow powder, was at first a reluctant participant, but with enough chemical persuasion has proven to be a potent partner for ener … read more

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Identifying Key Organic-Inorganic Interaction Sites for Enhanced Emission in Hybrid Perovskites via Pressure Engineering

Published

on

By

Identifying Key Organic-Inorganic Interaction Sites for Enhanced Emission in Hybrid Perovskites via Pressure Engineering


Identifying Key Organic-Inorganic Interaction Sites for Enhanced Emission in Hybrid Perovskites via Pressure Engineering

by Simon Mansfield

Sydney, Australia (SPX) Mar 14, 2025






A research team from Jilin University has developed a new approach using pressure engineering to pinpoint organic-inorganic interaction sites in non-hydrogen-bonded hybrid metal perovskites. This innovative method provides valuable insight into the photophysical mechanisms governing hybrid perovskites and offers guidance for designing materials with tailored optical properties.

“Previous research has primarily focused on the role of hydrogen bonding in shaping the photophysical properties of hybrid perovskites,” explained Guanjun Xiao, the study’s lead researcher. “However, the lack of investigation into the interaction mechanisms of non-hydrogen-bonded hybrid perovskites has hindered precise material design for targeted applications.”



By employing high-pressure techniques, Xiao and his team studied the specific interaction sites within the non-hydrogen-bonded hybrid perovskite (DBU)PbBr3. Their findings highlighted that the spatial arrangement of Br-N atomic pairs plays a crucial role in influencing organic-inorganic interactions.



The research was published on September 16 in *Research*, a Science Partner Journal launched by the American Association for the Advancement of Science (AAAS) in collaboration with the China Association for Science and Technology (CAST). Xiao is a professor at the State Key Laboratory of Superhard Materials at Jilin University.



The study involved synthesizing microrod (DBU)PbBr3 using the hot injection method and systematically analyzing its optical and structural properties under high pressure. The researchers observed that the material’s emission exhibited enhancement and a blue shift under pressure, with photoluminescence quantum yield reaching 86.6% at 5.0 GPa. Additionally, photoluminescence lifetime measurements indicated a suppression of non-radiative recombination under pressure.



A significant discovery was the presence of an abnormally enhanced Raman mode in the pressure range where emission enhancement occurred. “This suggests a potential connection between the two phenomena,” Xiao noted. Further analysis identified the Raman mode as being linked to organic-inorganic interactions, likely associated with N-Br bonding.



To deepen their understanding, the team conducted structural evolution studies under pressure, supported by first-principles calculations. They confirmed that the primary determinants of interaction strength were the spatial arrangement of N and Br atoms, including their distance and dihedral angle. A notable isostructural phase transition at 5.5 GPa altered the primary compression direction, initially strengthening organic-inorganic interactions before leading to a subsequent decrease-trends that aligned with observed optical property changes.



“These findings bridge a significant knowledge gap in understanding organic-inorganic interactions in non-hydrogen-bonded hybrid halides, offering valuable design principles for materials with specific optical performance targets,” Xiao stated.



Research Report:Identifying Organic-Inorganic Interaction Sites Toward Emission Enhancement in Non-Hydrogen-Bonded Hybrid Perovskite via Pressure Engineering


Related Links

State Key Laboratory of Superhard Materials, College of Physics, Jilin University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Groundbreaking Discovery Links Small Polaron Effect to Enhanced Spin Lifetime in 2D Lead Halide Perovskites

Published

on

By

Groundbreaking Discovery Links Small Polaron Effect to Enhanced Spin Lifetime in 2D Lead Halide Perovskites


Groundbreaking Discovery Links Small Polaron Effect to Enhanced Spin Lifetime in 2D Lead Halide Perovskites

by Simon Mansfield

Sydney, Australia (SPX) Mar 14, 2025






Two-dimensional lead halide perovskites have emerged as highly promising materials for optoelectronic applications due to their superior carrier transport and defect tolerance. However, a comprehensive understanding of charge carrier dynamics in these materials has remained elusive, primarily due to their inherently soft polar lattice and pronounced electron-phonon interactions. While extensive studies have characterized charge behavior in bulk three-dimensional perovskites, the unique carrier dynamics of their two-dimensional counterparts have yet to be fully deciphered.

A recent study employed advanced transient spectroscopic methods combined with theoretical modeling to uncover the presence of small polarons in Dion-Jacobson phase 2D perovskites, particularly in the compound (4AMP)PbI4. Researchers determined that strong charge-lattice coupling induces a substantial deformation potential of 123 eV-approximately 30 times greater than those typically observed in conventional 2D and 3D perovskites. This extraordinary interaction significantly influences carrier dynamics within the material.



Utilizing optical Kerr spectroscopy, the research team identified extended polarization response times at room temperature, surpassing 600 ps. The study attributes this prolonged response to the formation of small polarons, which span roughly two-unit cells in size due to the lattice distortions present in the material. Additional investigations involving temperature-dependent phonon studies, spin relaxation analyses, and X-ray diffraction further substantiated the presence of these small polarons. These findings highlight their role in modifying excitonic Coulomb exchange interactions, leading to an up to tenfold increase in spin lifetime.

Implications for Optoelectronic Advancements

This discovery holds considerable promise for the future of optoelectronic device engineering. By elucidating the impact of small polaron formation on spin dynamics, researchers can refine 2D perovskite materials to achieve superior carrier mobility, extended spin lifetimes, and enhanced energy conversion efficiency. Such improvements could accelerate the development of next-generation solar cells, photodetectors, and spintronic devices.

The study also paves the way for tailoring charge-lattice interactions through controlled deformation potential tuning, potentially optimizing perovskite-based device performance. Future investigations may delve deeper into fine-tuning polaronic effects to further capitalize on their benefits in commercial applications.

Future Prospects

This research provides direct evidence of small polaron formation in Dion-Jacobson phase 2D perovskites, underscoring the critical influence of lattice interactions on spin dynamics and optoelectronic efficiency. Continued exploration of these mechanisms is expected to drive the development of novel materials that could redefine perovskite-based optoelectronics. These findings mark a significant step toward realizing energy-efficient, high-performance electronic and photonic devices.



Research Report:Giant deformation potential induced small polaron effect in Dion-Jacobson two-dimensional lead halide perovskites


Related Links

Southern University of Science and Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Cheap and environmentally friendly – the next generation LEDs may soon be here

Published

on

By

Cheap and environmentally friendly – the next generation LEDs may soon be here


Cheap and environmentally friendly – the next generation LEDs may soon be here

by Anders Torneholm

Linkoping, Sweden (SPX) Mar 13, 2025






Cost, technical performance and environmental impact – these are the three most important aspects for a new type of LED technology to have a broad commercial impact on society. This has been demonstrated by researchers at Linkoping University in a study published in Nature Sustainability.

“Perovskite LEDs are cheaper and easier to manufacture than traditional LEDs, and they can also produce vibrant and intense colours if used in screens. I’d say that this is the next generation of LED technology,” says Feng Gao, professor of optoelectronics at Linkoping University.



However, for a technological shift to take place, where today’s LEDs are replaced with those based on the material perovskite, more than just technical performance is required. That is why Feng Gao’s research group has collaborated with Professor Olof Hjelm and John Laurence Esguerra, assistant professor at LiU. They specialise in how innovations contributing to environmental sustainability can be introduced to the market.



Together, they have investigated the environmental impact and cost of 18 different perovskite LEDs, knowledge that is currently incomplete. The study was conducted using so-called life cycle assessment and techno-economic assessment.



Such analyses require a clear system definition – that is, what is included and not in terms of cost and environmental impact. Within this framework, what happens from the product being created until it can no longer be used is investigated. The life cycle of the product, from cradle to grave, can be divided into five different phases: raw material production, manufacturing, distribution, use and decommissioning.

“We’d like to avoid the grave. And things get more complicated when you take recycling into account. But here we show that it’s most important to think about the reuse of organic solvents and how raw materials are produced, especially if they are rare materials,” says Olof Hjelm.



One example where the life cycle analysis provides guidance concerns the small amount of toxic lead found in perovskite LEDs. This is currently necessary for the perovskites to be effective. But, according to Olof Hjelm, focusing only on lead is a mistake. There are also many other materials in LEDs, such as gold.



“Gold production is extremely toxic. There are byproducts such as mercury and cyanide. It’s also very energy-consuming,” he says.



The greatest environmental gain would instead be achieved by replacing gold with copper, aluminium or nickel, while maintaining the small amount of lead needed for the LED to function optimally.



The researchers have concluded that perovskite LEDs have great potential for commercialisation in the long term. Maybe they can even replace today’s LEDs, thanks to lower costs and less environmental impact. The big issue is longevity. However, the development of perovskite LEDs is accelerating and their life expectancy is increasing. The researchers believe that it needs to reach about 10,000 hours for a positive environmental impact, something they think is achievable. Today, the best perovskite LEDs last for hundreds of hours.



Muyi Zhang, PhD student at the Department of Physics, Chemistry and Biology at LiU, says that much of the research focus so far is on increasing the technical performance of LED, something he believes will change.



“We want what we develop to be used in the real world. But then, we as researchers need to broaden our perspective. If a product has high technical performance but is expensive and isn’t environmentally sustainable, it may not be highly competitive in the market. That mindset will increasingly come to guide our research.”



Research Report:Towards sustainable perovskite light-emitting diodes


Related Links

Linkoping University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending