Connect with us


Found at last: Bizarre, egg-laying mammal finally rediscovered after 60 years



Found at last: Bizarre, egg-laying mammal finally rediscovered after 60 years

More than sixty years after it was last recorded, an expedition team has rediscovered an iconic, egg-laying mammal in one of the most unexplored regions of the world. Attenborough’s long-beaked echidna, named after famed broadcaster Sir David Attenborough, was captured for the first time in photos and video footage using remote trail cameras set up in the Cyclops Mountains of Indonesia’s Papua Province.

Alongside the echidna’s rediscovery, the expedition — a partnership between the University of Oxford, Indonesian NGO Yayasan Pelayanan Papua Nenda (YAPPENDA), Cenderawasih University (UNCEN), Papua BBKSDA, and the National Research and Innovation Agency of Indonesia (BRIN), Re:Wild — made many other remarkable finds. These included Mayr’s honeyeater, a bird lost to science since 2008; an entirely new genus of tree-dwelling shrimp; countless new species of insects; and a previously unknown cave system. This was despite the difficulties posed by extremely inhospitable terrain, including venomous animals, blood-sucking leeches, malaria, earthquakes, and exhausting heat.

One of the world’s most unusual mammals finally caught on film

Recorded by science only once in 1961, Attenborough’s long-beaked echidna is a monotreme: an evolutionarily distinct group of egg-laying mammals that includes the platypus. This echidna species is so special because it is one of only five remaining species of monotremes, the sole guardians of this remarkable branch of the tree of life. Echidnas are notoriously difficult to find since they are nocturnal, live in burrows, and tend to be very shy. Attenborough’s long-beaked echidna has never been recorded anywhere outside the Cyclops Mountains, and is currently classified as Critically Endangered on the IUCN Red List of Threatened Species

To give themselves the best chance of finding one, the team deployed over 80 trail cameras, making multiple ascents of the mountains, and climbing more than 11,000 meters (more than the height of Everest) in the process. For almost the entire four weeks that the team spent in the forest, the cameras recorded no sign of the echidna. On the last day, with the last images on the final memory card, the team obtained their shots of the elusive mammal — the first ever photographs of Attenborough’s echidna. The identification of the species was later confirmed by Professor Kristofer Helgen, mammalogist and chief scientist and director of the Australian Museum Research Institute (AMRI).

Dr James Kempton, a biologist from the University of Oxford who conceived of and led the expedition, said: ‘Attenborough’s long-beaked echidna has the spines of a hedgehog, the snout of an anteater, and the feet of a mole. Because of its hybrid appearance, it shares its name with a creature of Greek mythology that is half human, half serpent. The reason it appears so unlike other mammals is because it is a member of the monotremes — an egg-laying group that separated from the rest of the mammal tree-of-life about 200 million years ago.’

‘The discovery is the result of a lot of hard work and over three and a half years of planning,’ he added. ‘A key reason why we succeeded is because, with the help of YAPPENDA, we have spent years building a relationship with the community of Yongsu Sapari, a village on the north coast of the Cyclops Mountains. The trust between us was the bedrock of our success because they shared with us the knowledge to navigate these treacherous mountains, and even allowed us to research on lands that have never before felt the tread of human feet.’

A treasure trove of discoveries

Alongside searching for the echidna, the expedition carried out the first comprehensive assessment of invertebrate, reptile, amphibian, and mammal life in the Cyclops Mountains. With the support of local guides in the expedition team, the scientists were able to create makeshift labs in the heart of the jungle with benches and desks made from forest branches and vines.

By combining scientific techniques with the Papuan team members’ experience and knowledge of the forest, the team made a wealth of new discoveries. These included several dozens of insect species completely new to science and the rediscovery of Mayr’s honeyeater (Ptiloprora mayri), a bird lost to science since 2008 and named after famed evolutionary biologist Ernst Mayr.

An extraordinary finding was an entirely new genus of ground and tree-dwelling shrimp. ‘We were quite shocked to discover this shrimp in the heart of the forest, because it is a remarkable departure from the typical seaside habitat for these animals,’ said Dr Leonidas-Romanos Davranoglou (a Leverhulme Trust Postdoctoral Fellow at the Oxford University Museum of Natural History), lead entomologist for the expedition. ‘We believe that the high level of rainfall in the Cyclops Mountains means the humidity is great enough for these creatures to live entirely on land.’

The team also revealed a treasure trove of underground species, including blind spiders, blind harvestman, and a whip scorpion, all new to science, in a previously unexplored cave system. This astonishing discovery was made on one of the sacred peaks above Yongsu Sapari where the team had been given special permission to do research. People rarely tread here, and the striking cave system was chanced upon when one team member fell through a moss-covered entrance.

‘A beautiful but dangerous land’

Extremely challenging and, at times, life-threatening conditions were at the background of these discoveries. During one of the trips to the cave system, a sudden earthquake forced the team to evacuate. Dr Davranoglou broke his arm in two places, one member contracted malaria, and another had a leech attached to his eye for a day and a half before it was finally removed at a hospital. Throughout the expedition, members were beset by biting mosquitoes and ticks, and faced constant danger from venomous snakes and spiders. Making any progress through the jungle was a slow and exhausting process, with the team sometimes having to cut paths where no humans had ever been before.

‘Though some might describe the Cyclops as a “Green Hell,” I think the landscape is magical, at once enchanting and dangerous, like something out of a Tolkien book’ said Dr Kempton. ‘In this environment, the camaraderie between the expedition members was fantastic, with everyone helping to keep up morale. In the evening, we exchanged stories around the fire, all the while surrounded by the hoots and peeps of frogs.’

An enduring legacy

Rediscovering the echidna is only the beginning of the expedition’s mission. Attenborough’s long-beaked echidna is the flagship animal of the Cyclops Mountains and a symbol of its extraordinary biodiversity. The team hope that its rediscovery will help bring attention to the conservation needs of the Cyclops, and Indonesian New Guinea more generally, and they are committed to supporting long-term monitoring of the echidna. Key to this work is NGO YAPPENDA, whose mission is to protect the natural environment of Indonesian New Guinea through empowerment of Indigenous Papuans. As part of the expedition team, members of YAPPENDA helped train six students from UNCEN in biodiversity surveys and camera trapping during the expedition.

Dr Davranoglou said: ‘Tropical rainforests are among the most important and most threatened terrestrial ecosystems. It is our duty to support our colleagues on the frontline through exchanging knowledge, skills, and equipment.’

With the team having only sorted a fraction of the material collected on the expedition, they expect that the coming months will yield even more new species. The intention is to name many of these after the Papuan members of the expedition.

Besides animal specimens, the team also collected over 75 kg of rock samples for geological analysis, which was led by the expedition’s chief geologist, Max Webb, from Royal Holloway University, London. These could help answer many questions about how and when the Cyclops Mountains originally formed. The mountains are believed to have formed when an island arc in the Pacific Ocean collided with the New Guinea mainland about 10 million years ago. Combined with the biological findings, this geological work will help the team understand how the extraordinary biodiversity of the Cyclops came to be.

About Attenborough’s long-beaked echidna:

  • Attenborough’s long-beaked echidna, Zaglossus attenboroughi, is not known to live outside the Cyclops Mountains and biologists still have many unanswered questions about its habitat and ecology.
  • Attenborough’s long-beaked echidna is an EDGE species: a threatened species that has few close relatives on the evolutionary tree of life. They have evolved independently of other mammals for about 200 million years.
  • The echidna has cultural significance for the people of Yongsu Sapari, who have lived on the northern slopes of the Cyclops Mountains for eighteen generations. When there is a conflict within the community, rather than fighting, there is a tradition that one party goes up into the Cyclops to search for an echidna while the other party goes to the ocean to find a marlin. Both creatures were so difficult to find that it would often take decades or a whole generation to locate them, but, once found, the animals symbolized the end of the conflict and a return to harmonious relationships in the village.
  • The echidna has only been scientifically recorded once, when it was discovered by Pieter van Royen — a Dutch botanist — in 1961. Since then it has only been known from reports of sightings by the Yongsu Sapari community, and indirect signs during pre-expedition work in 2022. These signs, also observed during the expedition, included ‘nose pokes,’ holes in the ground left by echidnas after using their long, slightly curved snouts to probe for underground invertebrates.

About the expedition:

  • The expedition was first proposed in 2019 by James Kempton.
  • Academics who collaborated closely on the expedition include Dr James Kempton (University of Oxford), Dr Leonidas-Romanos Davranoglou (Oxford University Museum of Natural History), Madeleine Foote (University of Oxford), Dr Andrew Tilker (Re:wild, Leibniz Institute for Zoo and Wildlife Research), Dr Attila Balázs (Mendel University) and Dr Max Webb (Royal Holloway, University of London).
  • Cenderawasih University (UNCEN) team members and partners include Dr Suriani Surbakti, Gison Morib and Heron Yando.
  • Team members and collaborators from Indonesian NGO Yayasan Pelayanan Papua Nenda (YAPPENDA) include co-founders Iain and Malcolm Kobak, and Yali Kobak, Sampari Kobak, Ezra Daniel, Ruben Penggu, Melias Heluka, Yuanis Yalak and Sili Yalak.
  • The team obtained permits from Papua BBKSDA and BRIN. They were also given permission from the community of Yongsu Sapari to conduct research and collect specimens on their land during the expedition.
  • This rediscovery was made possible in part by the generous support of Merton College Oxford, the Royal Geographical Society, the Scientific Exploration Society, Re:wild, Royal Holloway University, the University of Oxford, Reconyx, and private donations from Derek Williams, Chris Peri, and other generous individuals.

About the Cyclops Mountains:

  • The Cyclops Mountains are one of the most inhospitable regions in the world, being rugged, steep, and dangerous, and ranging from sea level to 1,970 metres. They are dominated by two main peaks — Gunung Rara and Gunung Dafonsoro. When sailing ten leagues from the range’s northern coastline in 1768, Baron Louis de Bougainville noted ‘les deux cyclopes’, from which the mountains bear their name.
  • The Cyclops Mountains are a Key Biodiversity Area, meaning that they are critical to the persistence of biodiversity and to the overall health of the planet.
  • The community of Yongsu Sapari have lived in the region for eighteen generations and hold the land as sacred. They believe it is stewarded by a female spirit who can take the form of a tree-kangaroo.

Source link

Continue Reading
Click to comment

Leave a Reply


New snake discovery rewrites history, points to North America’s role in snake evolution




Found at last: Bizarre, egg-laying mammal finally rediscovered after 60 years

A new species of fossil snake unearthed in Wyoming is rewriting our understanding of snake evolution. The discovery, based on four remarkably well-preserved specimens found curled together in a burrow, reveals a new species named Hibernophis breithaupti. This snake lived in North America 34 million years ago and sheds light on the origin and diversification of boas and pythons.

Hibernophis breithaupti has unique anatomical features, in part because the specimens are articulated — meaning they were found all in one piece with the bones still arranged in the proper order — which is unusual for fossil snakes. Researchers believe it may be an early member of Booidea, a group that includes modern boas and pythons. Modern boas are widespread in the Americas, but their early evolution is not well understood.These new and very complete fossils add important new information, in particular, on the evolution of small, burrowing boas known as rubber boas.

Traditionally, there has been much debate on the evolution of small burrowing boas. Hibernophis breithaupti shows that northern and more central parts of North America might have been a key hub for their development. The discovery of these snakes curled together also hints at the oldest potential evidence for a behavior familiar to us today — hibernation in groups.

“Modern garter snakes are famous for gathering by the thousands to hibernate together in dens and burrows,” says Michael Caldwell, a U of A paleontologist who co-led the research along with his former graduate student Jasmine Croghan, and collaborators from Australia and Brazil. “They do this to conserve heat through the effect created by the ball of hibernating animals. It’s fascinating to see possible evidence of such social behavior or hibernation dating back 34 million years.”

Source link

Continue Reading


Good timing: Study unravels how our brains track time




Found at last: Bizarre, egg-laying mammal finally rediscovered after 60 years

Ever hear the old adage that time flies when you’re having fun? A new study by a team of UNLV researchers suggests that there’s a lot of truth to the trope.

Many people think of their brains as being intrinsically synced to the human-made clocks on their electronic devices, counting time in very specific, minute-by-minute increments. But the study, published this month in the latest issue of the peer-reviewed Cell Press journal Current Biology, showed that our brains don’t work that way.

By analyzing changes in brain activity patterns, the research team found that we perceive the passage of time based on the number of experiences we have — not some kind of internal clock. What’s more, increasing speed or output during an activity appears to affect how our brains perceive time.

“We tell time in our own experience by things we do, things that happen to us,” said James Hyman, a UNLV associate professor of psychology and the study’s senior author. “When we’re still and we’re bored, time goes very slowly because we’re not doing anything or nothing is happening. On the contrary, when a lot of events happen, each one of those activities is advancing our brains forward. And if this is how our brains objectively tell time, then the more that we do and the more that happens to us, the faster time goes.”

Methodology and Findings

The findings are based on analysis of activity in the anterior cingulate cortex (ACC), a portion of the brain important for monitoring activity and tracking experiences. To do this, rodents were tasked with using their noses to respond to a prompt 200 times.

Scientists already knew that brain patterns are similar, but slightly different, each time you do a repetitive motion, so they set out to answer: Is it possible to detect whether these slight differences in brain pattern changes correspond with doing the first versus 200th motion in series? And does the amount of time it takes to complete a series of motions impact brain wave activity?

By comparing pattern changes throughout the course of the task, researchers observed that there are indeed detectable changes in brain activity that occur as one moves from the beginning to middle to end of carrying out a task. And regardless of how slowly or quickly the animals moved, the brain patterns followed the same path. The patterns were consistent when researchers applied a machine learning-based mathematical model to predict the flow of brain activity, bolstering evidence that it’s experiences — not time, or a prescribed number of minutes, as you would measure it on a clock — that produce changes in our neurons’ activity patterns.

Hyman drove home the crux of the findings by sharing an anecdote of two factory workers tasked with making 100 widgets during their shift, with one worker completing the task in 30 minutes and the other in 90 minutes.

“The length of time it took to complete the task didn’t impact the brain patterns. The brain is not a clock; it acts like a counter,” Hyman explained. “Our brains register a vibe, a feeling about time. …And what that means for our workers making widgets is that you can tell the difference between making widget No. 85 and widget No. 60, but not necessarily between No. 85 and No. 88.”

But exactly “how” does the brain count? Researchers discovered that as the brain progresses through a task involving a series of motions, various small groups of firing cells begin to collaborate — essentially passing off the task to a different group of neurons every few repetitions, similar to runners passing the baton in a relay race.

“So, the cells are working together and over time randomly align to get the job done: one cell will take a few tasks and then another takes a few tasks,” Hyman said. “The cells are tracking motions and, thus, chunks of activities and time over the course of the task.”

And the study’s findings about our brains’ perception of time applies to activities-based actions other than physical motions too.

“This is the part of the brain we use for tracking something like a conversation through dinner,” Hyman said. “Think of the flow of conversation and you can recall things earlier and later in the dinner. But to pick apart one sentence from the next in your memory, it’s impossible. But you know you talked about one topic at the start, another topic during dessert, and another at the end.”

By observing the rodents who worked quickly, scientists also concluded that keeping up a good pace helps influence time perception: “The more we do, the faster time moves. They say that time flies when you’re having fun. As opposed to having fun, maybe it should be ‘time flies when you’re doing a lot’.”


While there’s already a wealth of information on brain processes over very short time scales of less than a second, Hyman said that the UNLV study is groundbreaking in its examination of brain patterns and perception of time over a span of just a few minutes to hours — “which is how we live much of our life: one hour at a time. ”

“This is among the first studies looking at behavioral time scales in this particular part of the brain called the ACC, which we know is so important for our behavior and our emotions,” Hyman said.

The ACC is implicated in most psychiatric and neurodegenerative disorders, and is a concentration area for mood disorders, PTSD, addiction, and anxiety. ACC function is also central to various dementias including Alzheimer’s disease, which is characterized by distortions in time. The ACC has long been linked to helping humans with sequencing events or tasks such as following recipes, and the research team speculates that their findings about time perception might fall within this realm.

While the findings are a breakthrough, more research is needed. Still, Hyman said, the preliminary findings posit some potentially helpful tidbits about time perception and its likely connection to memory processes for everyday citizens’ daily lives. For example, researchers speculate that it could lend insights for navigating things like school assignments or even breakups.

“If we want to remember something, we may want to slow down by studying in short bouts and take time before engaging in the next activity. Give yourself quiet times to not move,” Hyman said. “Conversely, if you want to move on from something quickly, get involved in an activity right away.”

Hyman said there’s also a huge relationship between the ACC, emotion, and cognition. Thinking of the brain as a physical entity that one can take ownership over might help us control our subjective experiences.

“When things move faster, we tend to think it’s more fun — or sometimes overwhelming. But we don’t need to think of it as being a purely psychological experience, as fun or overwhelming; rather, if you view it as a physical process, it can be helpful,” he said. “If it’s overwhelming, slow down or if you’re bored, add activities. People already do this, but it’s empowering to know it’s a way to work your own mental health, since our brains are working like this already.”

Source link

Continue Reading


Another intermediate-mass black hole discovered at the center of our galaxy




Found at last: Bizarre, egg-laying mammal finally rediscovered after 60 years

While researching a cluster of stars in the immediate vicinity of the supermassive black hole SgrA* (Sagittarius A*) at the centre of our galaxy, an international team of researchers led by PD Dr Florian Peißker has found signs of another, intermediate-mass black hole. Despite enormous research efforts, only about ten of these intermediate-mass black holes have been found in our entire universe so far. Scientists believe that they formed shortly after the Big Bang. By merging, they act as ‘seeds’ for supermassive black holes. The study ‘The Evaporating Massive Embedded Stellar Cluster IRS 13 Close to Sgr A*. II. Kinematic structure’ was published in The Astrophysical Journal.

The analysed star cluster IRS 13 is located 0.1 light years from the centre of our galaxy. This is very close in astronomical terms, but would still require travelling from one end of our solar system to the other twenty times to cover the distance. The researchers noticed that the stars in IRS 13 move in an unexpectedly orderly pattern. They had actually expected the stars to be arranged randomly. Two conclusions can be drawn from this regular pattern: On the one hand, IRS 13 appears to interact with SgrA*, which leads to the orderly motion of the stars. On the other hand, there must be something inside the cluster for it to be able to maintain its observed compact shape.

Multi-wavelength observations with the Very Large Telescope as well as the ALMA and Chandra telescopes now suggest that the reason for the compact shape of IRS 13 could be an intermediate-mass black hole located at the centre of the star cluster. This would be supported by the fact that the researchers were able to observe characteristic X-rays and ionized gas rotating at a speed of several 100 km/s in a ring around the suspected location of the intermediate-mass black hole.

Another indication of the presence of an intermediate-mass black hole is the unusually high density of the star cluster, which is higher than that of any other known density of a star cluster in our Milky Way. “IRS 13 appears to be an essential building block for the growth of our central black hole SgrA*,” said Florian Peißker, first author of the study. “This fascinating star cluster has continued to surprise the scientific community ever since it was discovered around twenty years ago. At first it was thought to be an unusually heavy star. With the high-resolution data, however, we can now confirm the building-block composition with an intermediate-mass black hole at the centre.” Planned observations with the James Webb Space Telescope and the Extremely Large Telescope, which is currently under construction, will provide further insights into the processes within the star cluster.

Source link

Continue Reading