Connect with us

Solar Energy

Optimizing Thermal Stability in Solid Oxide Fuel Cells

Published

on

Optimizing Thermal Stability in Solid Oxide Fuel Cells


Optimizing Thermal Stability in Solid Oxide Fuel Cells

by Simon Mansfield

Sydney, Australia (SPX) Jul 23, 2024






Solid oxide fuel cells (SOFCs) represent a highly efficient and clean energy conversion technology, directly converting chemical energy into electrical energy through electrochemical reactions. These cells are increasingly used for distributed and stationary power generation. However, practical application demands consideration of user operations and maintenance, which often subjects the device to significant temperature fluctuations. In residential settings, SOFC systems frequently cycle on and off based on the homeowner’s needs.

SOFCs can experience temperature changes during operation, especially when generating electricity from waste heat in industrial processes or thermal power plants, where heat supply is inconsistent. Additionally, environmental factors like diurnal temperature variations and extreme weather conditions can lead to substantial thermal fluctuations. These temperature variations cause thermal stresses due to the mismatch in the thermal expansion coefficients (TEC) of different SOFC components, potentially degrading the interfaces and reducing the power output. Therefore, maintaining thermal cycle stability is critical for the commercialization of SOFC technology.



A recent study by a team of material scientists, led by Liangzhu Zhu from the Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China, proposed a novel approach. They synthesized single perovskite oxide decorated R-P structured oxide using a self-assembly method to enhance catalytic activity and stability. This work demonstrated excellent TEC matching between strontium lanthanum ferrate and the electrolyte, showcasing its potential as a competitive air electrode for SOFCs.



“In this report, we synthesized dual-phase La0.8Sr1.2FeO4+d and La0.4Sr0.6FeO3-d by the simple self-assembly method. The single perovskite oxide, La0.4Sr0.6FeO3-d (LSF-P), with cubic structure and high catalytic activity was introduced to facilitate charge transport across the R-P structured oxides La0.8Sr1.2FeO4+d (LSF-RP) with various orientations. This approach overcomes the anisotropy inherent in the structure and concurrently enhances the catalytic activity of the composite electrode. The intimate hetero-interfaces that may form in situ between LSF-RP and LSF-P particles are anticipated to expedite the charge transfer process, thereby enhancing the ORR kinetics. We present the influence of the LSF-P content in dual phase on the phase structure, thermal expansion coefficient, electrode reaction kinetics, single cell performance under thermal cycling and reversible conditions in detail. The obtained results indicate that the incorporation of LSF-P improves the oxygen surface exchange kinetics, reduces the polarization resistance and significantly enhances the single-cell performance without sacrificing the stability of the composite electrode,” said Liangzhu Zhu, professor at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China.



“The TEC values of R-P oxides are comparable to those of the electrolytes commonly utilized in SOFCs. However, it is important to note that R-P oxides exhibit two-dimensional conduction. They demonstrate significant anisotropy in the diffusion of oxygen ions and electrons, with transport predominantly occurring within the a-b plane and minimal movement along the c-axis. Consequently, there is a need to modify the R-P structured material to enhance its charge transfer capability, thereby increasing their catalytic activity, without sacrificing stability for application in SOFCs,” said Liangzhu Zhu.



Introducing a secondary phase is a common strategy to boost the catalytic activity of R-P oxides. “Mechanical mixing is a relatively straightforward method for the introduction of secondary phase. While mechanical mixing can enhance electrode performance to some degree, it struggles with achieving a homogeneous distribution of the phases, which in turn restricts the interfacial contact between them. Infiltration is another alternative for introducing the second phase material. However, it is a cumbersome and time-consuming process that requires multistep operations,” said Yang Zhang, one of the co-first authors and a postdoctoral researcher at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China.



“The self-assembly synthesis technique for fabricating composite materials is capable of yielding thermodynamically stable and homogeneously dispersed dual-phase structures in a single, streamlined operation. By merely adjusting the ratios of the starting materials, the incorporation of the second phase can be finely tuned. Furthermore, this self-assembly approach holds significant promise for creating numerous heterogeneous structural interfaces within composite air electrodes, which in turn can significantly boost the kinetics of the oxygen reduction reaction (ORR). Additionally, the method has the potential to greatly enhance the performance of composite air electrodes by optimizing the ORR process,” said Liangzhu Zhu.



Research Report:An innovative and facile synthesis route of (La,Sr)2FeO4+d-La0.4Sr0.6FeO3-d composite as a highly stable air electrode for reversible solid oxide cell applications


Related Links

Tsinghua University

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

DGIST enhances quantum dot solar cell performance

Published

on

By

DGIST enhances quantum dot solar cell performance


DGIST enhances quantum dot solar cell performance

by Riko Seibo

Tokyo, Japan (SPX) Oct 04, 2024







A research team led by Professor Jongmin Choi from the Department of Energy Science and Engineering at DGIST, in collaboration with Gyeongsang National University’s Professor Tae Kyung Lee and Kookmin University’s Professor Younghoon Kim, has developed a new method that significantly boosts the performance and longevity of perovskite quantum dot solar cells. Their innovative approach addresses a key issue: surface distortions on quantum dots that hinder solar cell efficiency.

Perovskite quantum dots are widely regarded as essential for next-generation solar cells due to their high light-to-electricity conversion efficiency and scalability. However, the process of replacing the “ligands” on their surface often causes distortions, akin to crumpled paper, that degrade solar cell performance.



The research team tackled this problem by introducing short ligands that firmly grip both sides of the quantum dots. This method effectively restores the quantum dot’s distorted surface, resembling the process of flattening crumpled paper. By smoothing the surface, they significantly reduced defects and improved both the performance and the stability of the solar cells. The power conversion efficiency rose from 13.6% to 15.3%, and the cells maintained 83% of their performance over 15 days, marking a major advancement in solar cell technology.



“Through this research, we could minimize surface defects on the quantum dots and stabilize their surfaces by newly adopting these amphiphilic ligands, thereby significantly improving the efficiency and stability of the solar cells,” explained Professor Jongmin Choi. He also noted the team’s intention to extend this approach to other photoelectric devices in the future.



This study, a collaborative effort by DGIST, Gyeongsang National University, and Kookmin University, was supported by the National Research Council of Science and Technology, the DGIST R and D Program, and the New Faculty Research Foundation at Gyeongsang National University. The findings were published in the ‘Chemical Engineering Journal’ on September 15, 2024.



Research Report:Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots


Related Links

DGIST

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Philippines’ Marcos opens first EV battery plant

Published

on

By

Philippines’ Marcos opens first EV battery plant


Philippines’ Marcos opens first EV battery plant

by AFP Staff Writers

Manila (AFP) Sept 30, 2024






President Ferdinand Marcos inaugurated on Monday the first factory for electric vehicle batteries in the Philippines, calling it the “future” of clean energy.

The Australian-owned lithium-iron-phosphate factory aims to produce two gigawatt-hours of batteries per year by 2030, powering about 18,000 electric vehicles or nearly half a million home battery systems.

“We have worked very hard and tried to do our best to bring this kind of technology to the Philippines with a clear recognition that this is the future,” Marcos said in a livestreamed speech.

“As the first manufacturing plant in the Philippines for advanced iron phosphate batteries… (it) sets the stage for the Philippines to become a player in clean energy storage in our part of the world.”

Located in New Clark city north of Manila, the StB Giga Factory Inc. facility will create 2,500 local jobs and channel five billion pesos ($89.2 million) into the economy each year, Marcos said.

The investment aligns with the government’s efforts to “transition our country to renewable energy”, and would help Manila “entice more investors in renewable energy facilities in the country”, he added.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Fire breaks out at Chinese battery giant CATL plant

Published

on

By

Fire breaks out at Chinese battery giant CATL plant


Fire breaks out at Chinese battery giant CATL plant

by AFP Staff Writers

Beijing (AFP) Sept 29, 2024






A fire broke out Sunday at a factory belonging to Chinese battery giant CATL, which supplies electric vehicle makers including Tesla, but only a “relatively small” impact on operations is expected, the company said.

A CATL spokesperson said no injuries or casualties had occurred at the plant in the coastal city of Ningde, and that “the reasons behind this accident are still under investigation”.

Emergency services were sent to the plant to fight the fire and to organise the evacuation of any people who were inside the 15,000 square metre (160,000 square feet) site, a statement by the Dongqiao Economic and Technological Development Zone said.

Firefighters were alerted to the blaze just before 11:30 AM local time (0330 GMT).

It was not immediately clear what was produced at the plant, CATL’s base in the eastern province of Fujian, but the company said the effect of the now extinguished fire would not be significant.

“The impact to CATL’s overall production operation is relatively small,” the spokesperson said.

Videos published by the Chinese business media outlet Cailianshe, and posted on the Weibo social network, showed parts of a large white building in flames with thick gray smoke rising into the air.

AFP could not immediately verify the authenticity of the images.

CATL was founded in 2011 and produces more than a third of the electric vehicle batteries sold worldwide for automakers that include Mercedes-Benz, BMW, Volkswagen, Toyota, Honda and Hyundai.

ehl-reb/des

Tesla

Weibo

Mercedes-Benz Group

BAYERISCHE MOTOREN WERKE AG

Volkswagen

TOYOTA MOTOR

HONDA MOTOR

Hyundai Motor Company

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Trending