Connect with us

TOP SCEINCE

Scientists work out the effects of exercise at the cellular level

Published

on

Scientists work out the effects of exercise at the cellular level


The health benefits of exercise are well known but new research shows that the body’s response to exercise is more complex and far-reaching than previously thought. In a study on rats, a team of scientists from across the United States has found that physical activity causes many cellular and molecular changes in all 19 of the organs they studied in the animals.

Exercise lowers the risk of many diseases, but scientists still don’t fully understand how exercise changes the body on a molecular level. Most studies have focused on a single organ, sex, or time point, and only include one or two data types.

To take a more comprehensive look at the biology of exercise, scientists with the Molecular Transducers of Physical Activity Consortium (MoTrPAC) used an array of techniques in the lab to analyze molecular changes in rats as they were put through the paces of weeks of intense exercise. Their findings appear in Nature.

The team studied a range of tissues from the animals, such as the heart, brain, and lungs. They found that each of the organs they looked at changed with exercise, helping the body to regulate the immune system, respond to stress, and control pathways connected to inflammatory liver disease, heart disease, and tissue injury.

The data provide potential clues into many different human health conditions; for example, the researchers found a possible explanation for why the liver becomes less fatty during exercise, which could help in the development of new treatments for non-alcoholic fatty liver disease.

The team hopes that their findings could one day be used to tailor exercise to an individual’s health status or to develop treatments that mimic the effects of physical activity for people who are unable to exercise. They have already started studies on people to track the molecular effects of exercise.

Launched in 2016, MoTrPAC draws together scientists from the Broad Institute of MIT and Harvard, Stanford University, the National Institutes of Health, and other institutions to shed light on the biological processes that underlie the health benefits of exercise. The Broad project was originally conceived of by Steve Carr, senior director of Broad’s Proteomics Platform; Clary Clish, senior director of Broad’s Metabolomics Platform; Robert Gerszten, a senior associate member at the Broad and chief of cardiovascular medicine at Beth Israel Deaconess Medical Center; and Christopher Newgard, a professor of nutrition at Duke University.

Co-first authors on the study include Pierre Jean-Beltran, a postdoctoral researcher in Carr’s group at Broad when the study began, as well as David Amar and Nicole Gay of Stanford. Courtney Dennis and Julian Avila, both researchers in Clish’s group, were also co-authors on the manuscript.

“It took a village of scientists with distinct scientific backgrounds to generate and integrate the massive amount of high quality data produced,” said Carr, a co-senior author of the study. “This is the first whole-organism map looking at the effects of training in multiple different organs. The resource produced will be enormously valuable, and has already produced many potentially novel biological insights for further exploration.”

The team has made all of the animal data available in an online public repository. Other scientists can use this site to download, for example, information about the proteins changing in abundance in the lungs of female rats after eight weeks of regular exercise on a treadmill, or the RNA response to exercise in all organs of male and female rats over time.

Whole-body analysis

Conducting such a large and detailed study required a lot of planning. “The amount of coordination that all of the labs involved in this study had to do was phenomenal,” said Clish.

In partnership with Sue Bodine at the Carver College of Medicine at the University of Iowa, whose group collected tissue samples from animals after up to eight weeks of training, other members of the MoTrPAC team divided the samples up so that each lab — Carr’s team analyzing proteins, Clish’s studying metabolites, and others — would examine virtually identical samples.

“A lot of large-scale studies only focus on one or two data types,” said Natalie Clark, a computational scientist in Carr’s group. “But here we have a breadth of many different experiments on the same tissues, and that’s given us a global overview of how all of these different molecular layers contribute to exercise response.”

In all, the teams performed nearly 10,000 assays to make about 15 million measurements on blood and 18 solid tissues. They found that exercise impacted thousands of molecules, with the most extreme changes in the adrenal gland, which produces hormones that regulate many important processes such as immunity, metabolism, and blood pressure. The researchers uncovered sex differences in several organs, particularly related to the immune response over time. Most immune-signaling molecules unique to females showed changes in levels between one and two weeks of training, whereas those in males showed differences between four and eight weeks.

Some responses were consistent across sexes and organs. For example, the researchers found that heat-shock proteins, which are produced by cells in response to stress, were regulated in the same ways across different tissues. But other insights were tissue-specific. To their surprise, Carr’s team found an increase in acetylation of mitochondrial proteins involved in energy production, and in a phosphorylation signal that regulates energy storage, both in the liver that changed during exercise. These changes could help the liver become less fatty and less prone to disease with exercise, and could give researchers a target for future treatments of non-alcoholic fatty liver disease.

“Even though the liver is not directly involved in exercise, it still undergoes changes that could improve health. No one speculated that we’d see these acetylation and phosphorylation changes in the liver after exercise training,” said Jean-Beltran. “This highlights why we deploy all of these different molecular modalities — exercise is a very complex process, and this is just the tip of the iceberg.”

“Two or three generations of research associates matured on this consortium project and learned what it means to carefully design a study and process samples,” added Hasmik Keshishian, a senior group leader in Carr’s group and co-author of the study. “Now we are seeing the results of our work: biologically insightful findings that are yielding from the high quality data we and others have generated.That’s really fulfilling.”

Other MoTrPAC papers published today include deeper dives into the response of fat and mitochondria in different tissues to exercise. Additional MoTrPAC studies are underway to study the effects of exercise on young adult and older rats, and the short-term effects of 30-minute bouts of physical activity. The consortium has also begun human studies, and are recruiting about 1,500 individuals of diverse ages, sexes, ancestries, and activity levels for a clinical trial to study the effects of both endurance and resistance exercise in children and adults.



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Early dark energy could resolve cosmology’s two biggest puzzles

Published

on

By

Scientists work out the effects of exercise at the cellular level


A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.

One puzzle in question is the “Hubble tension,” which refers to a mismatch in measurements of how fast the universe is expanding. The other involves observations of numerous early, bright galaxies that existed at a time when the early universe should have been much less populated.

Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.

Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.

The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.

You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”

The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.

Big city lights

Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.

But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.

“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”

For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.

Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.

Galaxy skeleton

The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.

“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”

The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.

Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.

The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.

“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”

“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”

We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”

This research was supported, in part, by NASA and the National Science Foundation.



Source link

Continue Reading

TOP SCEINCE

Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions

Published

on

By

Scientists work out the effects of exercise at the cellular level


A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.

It is well known that plants release volatile organic compounds (VOCs) into the atmosphere when damaged by herbivores. These VOCs play a crucial role in plant-plant interactions, whereby undamaged plants may detect warning signals from their damaged neighbours and prepare their defences. “Reactive plant VOCs undergo oxidative chemical reactions, resulting in the formation of secondary organic aerosols (SOAs). We wondered whether the ecological functions mediated by VOCs persist after they are oxidated to form SOAs,” said Dr. Hao Yu, formerly a PhD student at UEF, but now at the University of Bern.

The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.

“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.

“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.

The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.



Source link

Continue Reading

TOP SCEINCE

Folded or cut, this lithium-sulfur battery keeps going

Published

on

By

Scientists work out the effects of exercise at the cellular level


Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.

Sulfur has been suggested as a material for lithium-ion batteries because of its low cost and potential to hold more energy than lithium-metal oxides and other materials used in traditional ion-based versions. To make Li-S batteries stable at high temperatures, researchers have previously proposed using a carbonate-based electrolyte to separate the two electrodes (an iron sulfide cathode and a lithium metal-containing anode). However, as the sulfide in the cathode dissolves into the electrolyte, it forms an impenetrable precipitate, causing the cell to quickly lose capacity. Liping Wang and colleagues wondered if they could add a layer between the cathode and electrolyte to reduce this corrosion without reducing functionality and rechargeability.

The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.

After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.

The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.



Source link

Continue Reading

Trending