Solar Energy
Second life of lithium-ion batteries may propel future space missions
Second life of lithium-ion batteries may propel future space missions
by Robert Schreiber
Berlin, Germany (SPX) Sep 19, 2024
Lithium-ion battery usage worldwide has doubled in the past four years, contributing to a growing volume of hazardous battery waste. This rise underscores the urgent need for more effective recycling solutions. Scientists from several Polish research institutions, including Bydgoszcz University of Science and Technology (PBS), the Institute of Fundamental Technological Research of the Polish Academy of Sciences, the Institute of Physical Chemistry of the PAS in Warsaw, and Wroclaw University of Science and Technology, have introduced a promising approach in the journal ‘ChemElectroChem’.
The research focused on carbon materials extracted from the electrodes of spent lithium-ion batteries (LIBs). The team employed an acidic leaching process to recover valuable metals from these electrodes. Depending on experimental conditions, the extracted carbon materials retained trace amounts of metals like cobalt, commonly used in catalysis. The goal was to repurpose these materials for use in catalytic processes, with a particular emphasis on hydrogen peroxide production.
“Hydrogen peroxide is one of the fundamental chemical molecules, essential to numerous industries. Large-scale production of this substance typically demands high pressures and temperatures, costly catalysts, and various toxic electrolytes. Our focus was on developing a more environmentally friendly method for producing hydrogen peroxide: specifically, an electrochemical approach using catalysts derived from used lithium-ion batteries,” explains Dr. Eng. Magdalena Warczak (PBS), project leader and lead author.
The team’s electrochemical tests demonstrated that carbon nanostructures and cobalt recovered from the batteries exhibited catalytic properties for the oxygen reduction reaction. However, these properties were influenced by the composition and structure of the sample, which were determined by the types of etching baths used to clean the extracted electrodes.
“For potential future applications, the crucial finding is that, based on data gathered from experiments using a rotating electrode, we were able to determine the number of electrons involved in the reduction of a single oxygen molecule. The electrochemical reduction of oxygen can occur with either four or two electrons. In the case of four electrons, water is produced, but with two electrons, we obtain the desired hydrogen peroxide. In all the samples we tested, we observed the two-electron reduction,” explains Dr. Warczak.
To ensure accuracy, the measurements were repeated with battery powders suspended between two immiscible liquids, eliminating any influence from the glassy carbon electrode. The oxygen reduction reaction occurred spontaneously at the interface of these liquids, with the organic liquid containing decamethylferrocene, an electron donor. These experiments confirmed that all samples catalyzed the production of hydrogen peroxide, with concentrations measured by a scanning electrochemical microscope showing levels one to two orders of magnitude higher than those in systems without battery waste.
“Lithium-ion batteries have generally been viewed as just a secondary source of carbon materials, mainly graphite, and metals like lithium, cobalt, or nickel. Meanwhile, our group’s findings clearly demonstrate that battery waste can catalyze the reduction of oxygen to hydrogen peroxide, and in the future, this could lead to its use in producing this important chemical compound,” concludes Dr. Warczak.
Hydrogen peroxide, commonly found in pharmacies at a 3% concentration for disinfecting wounds, has a range of industrial applications. Solutions with up to 15% concentration are used in household cleaning products and cosmetics, while concentrations of around 30% are vital in industries such as chemical manufacturing, pulp and paper, textiles, electronics, and food processing. Hydrogen peroxide also serves as an oxidizer for fuels, including rocket propellants. During the 1940s, it was first used in early rockets capable of reaching space. Recently, hydrogen peroxide at concentrations exceeding 98% powered a suborbital rocket built by the Lukasiewicz Institute of Aviation in Warsaw.
The research on hydrogen peroxide production from spent lithium-ion batteries, initially funded by a SONATA grant from the Polish National Science Centre, will continue with a focus on enhancing the efficiency of electrochemical reactions for industrial use. The team also plans to explore four-electron reduction for potential applications in fuel cells.
Research Report:Insights into the High Catalytic Activity of Li-ion Battery Waste Toward Oxygen Reduction to Hydrogen Peroxide
Related Links
Bydgoszcz University of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com
Solar Energy
DGIST enhances quantum dot solar cell performance
DGIST enhances quantum dot solar cell performance
by Riko Seibo
Tokyo, Japan (SPX) Oct 04, 2024
A research team led by Professor Jongmin Choi from the Department of Energy Science and Engineering at DGIST, in collaboration with Gyeongsang National University’s Professor Tae Kyung Lee and Kookmin University’s Professor Younghoon Kim, has developed a new method that significantly boosts the performance and longevity of perovskite quantum dot solar cells. Their innovative approach addresses a key issue: surface distortions on quantum dots that hinder solar cell efficiency.
Perovskite quantum dots are widely regarded as essential for next-generation solar cells due to their high light-to-electricity conversion efficiency and scalability. However, the process of replacing the “ligands” on their surface often causes distortions, akin to crumpled paper, that degrade solar cell performance.
The research team tackled this problem by introducing short ligands that firmly grip both sides of the quantum dots. This method effectively restores the quantum dot’s distorted surface, resembling the process of flattening crumpled paper. By smoothing the surface, they significantly reduced defects and improved both the performance and the stability of the solar cells. The power conversion efficiency rose from 13.6% to 15.3%, and the cells maintained 83% of their performance over 15 days, marking a major advancement in solar cell technology.
“Through this research, we could minimize surface defects on the quantum dots and stabilize their surfaces by newly adopting these amphiphilic ligands, thereby significantly improving the efficiency and stability of the solar cells,” explained Professor Jongmin Choi. He also noted the team’s intention to extend this approach to other photoelectric devices in the future.
This study, a collaborative effort by DGIST, Gyeongsang National University, and Kookmin University, was supported by the National Research Council of Science and Technology, the DGIST R and D Program, and the New Faculty Research Foundation at Gyeongsang National University. The findings were published in the ‘Chemical Engineering Journal’ on September 15, 2024.
Research Report:Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots
Related Links
Solar Energy
Philippines’ Marcos opens first EV battery plant
Philippines’ Marcos opens first EV battery plant
by AFP Staff Writers
Manila (AFP) Sept 30, 2024
President Ferdinand Marcos inaugurated on Monday the first factory for electric vehicle batteries in the Philippines, calling it the “future” of clean energy.
The Australian-owned lithium-iron-phosphate factory aims to produce two gigawatt-hours of batteries per year by 2030, powering about 18,000 electric vehicles or nearly half a million home battery systems.
“We have worked very hard and tried to do our best to bring this kind of technology to the Philippines with a clear recognition that this is the future,” Marcos said in a livestreamed speech.
“As the first manufacturing plant in the Philippines for advanced iron phosphate batteries… (it) sets the stage for the Philippines to become a player in clean energy storage in our part of the world.”
Located in New Clark city north of Manila, the StB Giga Factory Inc. facility will create 2,500 local jobs and channel five billion pesos ($89.2 million) into the economy each year, Marcos said.
The investment aligns with the government’s efforts to “transition our country to renewable energy”, and would help Manila “entice more investors in renewable energy facilities in the country”, he added.
Related Links
Solar Energy
Fire breaks out at Chinese battery giant CATL plant
Fire breaks out at Chinese battery giant CATL plant
by AFP Staff Writers
Beijing (AFP) Sept 29, 2024
A fire broke out Sunday at a factory belonging to Chinese battery giant CATL, which supplies electric vehicle makers including Tesla, but only a “relatively small” impact on operations is expected, the company said.
A CATL spokesperson said no injuries or casualties had occurred at the plant in the coastal city of Ningde, and that “the reasons behind this accident are still under investigation”.
Emergency services were sent to the plant to fight the fire and to organise the evacuation of any people who were inside the 15,000 square metre (160,000 square feet) site, a statement by the Dongqiao Economic and Technological Development Zone said.
Firefighters were alerted to the blaze just before 11:30 AM local time (0330 GMT).
It was not immediately clear what was produced at the plant, CATL’s base in the eastern province of Fujian, but the company said the effect of the now extinguished fire would not be significant.
“The impact to CATL’s overall production operation is relatively small,” the spokesperson said.
Videos published by the Chinese business media outlet Cailianshe, and posted on the Weibo social network, showed parts of a large white building in flames with thick gray smoke rising into the air.
AFP could not immediately verify the authenticity of the images.
CATL was founded in 2011 and produces more than a third of the electric vehicle batteries sold worldwide for automakers that include Mercedes-Benz, BMW, Volkswagen, Toyota, Honda and Hyundai.
ehl-reb/des
Related Links
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news11 months ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera11 months ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Camera3 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Solar Energy11 months ago
Glencore eyes options on battery recycling project
-
world news11 months ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera11 months ago
Sony a9 III: what you need to know
-
TOP SCEINCE6 months ago
Can animals count?