Solar Energy
Sweeping review reveals impact of integrating AI into photovoltaics
Sweeping review reveals impact of integrating AI into photovoltaics
by Simon Mansfield
Sydney, Australia (SPX) Jun 13, 2024
Artificial intelligence is set to enhance photovoltaic systems by improving efficiency, reliability, and predictability of solar power generation.
In their paper published on May 8 in CAAI Artificial Intelligence Research, a research team from Chinese and Malaysian universities examined the impact of artificial intelligence (AI) technology on photovoltaic (PV) power generation systems and their applications globally.
“The overall message is an optimistic outlook on how AI can lead to more sustainable and efficient energy solutions,” said Xiaoyun Tian from Beijing University of Technology. “By improving the efficiency and deployment of renewable energy sources through AI, there is significant potential to reduce global carbon emissions and to make clean energy more accessible and reliable for a broader population.”
The team, which included researchers from Beijing University of Technology, Chinese Academy of Sciences, Hebei University, and the Universiti Tunku Abdul Rahman, focused their review on key applications of AI in maximum power point tracking, power forecasting, and fault detection within PV systems.
The maximum power point (MPP) refers to the specific operating point where a PV cell or an entire PV array yields its peak power output under prevailing illumination conditions. Tracking and exploiting the point of maximum power by adjusting the operating point of the PV array to maximize output power is a critical issue in solar PV systems. Traditional methods have defects, resulting in reduced efficiency, hardware wear, and suboptimal performance during sudden weather changes.
The researchers reviewed publications showing how AI techniques can achieve high performance in solving the MPP tracking problem. They compiled methods that presented both single and hybrid AI methods to solve the tracking problem, exploring the advantages and disadvantages of each approach.
The team reviewed publications that presented AI algorithms applied in PV power forecasting and defect detection technologies. Power forecasting, which predicts the production of PV power over a certain period, is crucial for PV grid integration as the share of solar energy in the mix increases annually. Fault detection in PV systems can identify various types of failures, such as environmental changes, panel damage, and wiring failures. For large-scale PV systems, traditional manual inspection is almost impossible. AI algorithms can identify deviations from normal operating conditions that may indicate faults or anomalies proactively.
The research team compared AI-driven techniques, exploring and presenting advantages and disadvantages of each approach.
While integrating AI technology optimizes PV systems’ operational efficiency, new challenges continue to arise. These challenges are driven by issues such as revised standards for achieving carbon neutrality, interdisciplinary cooperation, and emerging smart grids.
The researchers highlighted some emerging challenges and the need for advanced solutions in AI, such as transfer learning, few-shot learning, and edge computing.
According to the paper’s authors, the next steps should focus on further research directed towards advancing AI techniques that target the unique challenges of PV systems; practical implementation of AI solutions into existing PV infrastructure on a wider scale; scaling up successful AI integration; developing supportive policy frameworks that encourage the use of AI in renewable energy; increasing awareness about the benefits of AI in enhancing PV system efficiencies; and ultimately aligning these technological advancements with global sustainability targets.
“AI-driven techniques are essential for the future development and widespread adoption of solar-energy technologies globally,” Tian said.
The research was supported by the National Key R and D Program of China and Fundamental Research Grant Scheme of Malaysia. The grants are part of the China-Malaysia Intergovernmental Science, Technology and Innovation Cooperative Program 2023.
Other contributors include Jiaming Hu, Kang Wang, and Dachuan Xu from Beijing University of Technology; Boon-Han Lim from Universiti Tunku Abdul Rahman; Feng Zhang from Hebei University; and Yong Zhang from Shenzhen Institute of Advanced Technology, Chinese Academy of Science.
Research Report:A Comprehensive Review of Artificial Intelligence Applications in Photovoltaic Systems
Related Links
Beijing University of Technology
All About Solar Energy at SolarDaily.com
Solar Energy
DGIST enhances quantum dot solar cell performance
DGIST enhances quantum dot solar cell performance
by Riko Seibo
Tokyo, Japan (SPX) Oct 04, 2024
A research team led by Professor Jongmin Choi from the Department of Energy Science and Engineering at DGIST, in collaboration with Gyeongsang National University’s Professor Tae Kyung Lee and Kookmin University’s Professor Younghoon Kim, has developed a new method that significantly boosts the performance and longevity of perovskite quantum dot solar cells. Their innovative approach addresses a key issue: surface distortions on quantum dots that hinder solar cell efficiency.
Perovskite quantum dots are widely regarded as essential for next-generation solar cells due to their high light-to-electricity conversion efficiency and scalability. However, the process of replacing the “ligands” on their surface often causes distortions, akin to crumpled paper, that degrade solar cell performance.
The research team tackled this problem by introducing short ligands that firmly grip both sides of the quantum dots. This method effectively restores the quantum dot’s distorted surface, resembling the process of flattening crumpled paper. By smoothing the surface, they significantly reduced defects and improved both the performance and the stability of the solar cells. The power conversion efficiency rose from 13.6% to 15.3%, and the cells maintained 83% of their performance over 15 days, marking a major advancement in solar cell technology.
“Through this research, we could minimize surface defects on the quantum dots and stabilize their surfaces by newly adopting these amphiphilic ligands, thereby significantly improving the efficiency and stability of the solar cells,” explained Professor Jongmin Choi. He also noted the team’s intention to extend this approach to other photoelectric devices in the future.
This study, a collaborative effort by DGIST, Gyeongsang National University, and Kookmin University, was supported by the National Research Council of Science and Technology, the DGIST R and D Program, and the New Faculty Research Foundation at Gyeongsang National University. The findings were published in the ‘Chemical Engineering Journal’ on September 15, 2024.
Research Report:Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots
Related Links
Solar Energy
Philippines’ Marcos opens first EV battery plant
Philippines’ Marcos opens first EV battery plant
by AFP Staff Writers
Manila (AFP) Sept 30, 2024
President Ferdinand Marcos inaugurated on Monday the first factory for electric vehicle batteries in the Philippines, calling it the “future” of clean energy.
The Australian-owned lithium-iron-phosphate factory aims to produce two gigawatt-hours of batteries per year by 2030, powering about 18,000 electric vehicles or nearly half a million home battery systems.
“We have worked very hard and tried to do our best to bring this kind of technology to the Philippines with a clear recognition that this is the future,” Marcos said in a livestreamed speech.
“As the first manufacturing plant in the Philippines for advanced iron phosphate batteries… (it) sets the stage for the Philippines to become a player in clean energy storage in our part of the world.”
Located in New Clark city north of Manila, the StB Giga Factory Inc. facility will create 2,500 local jobs and channel five billion pesos ($89.2 million) into the economy each year, Marcos said.
The investment aligns with the government’s efforts to “transition our country to renewable energy”, and would help Manila “entice more investors in renewable energy facilities in the country”, he added.
Related Links
Solar Energy
Fire breaks out at Chinese battery giant CATL plant
Fire breaks out at Chinese battery giant CATL plant
by AFP Staff Writers
Beijing (AFP) Sept 29, 2024
A fire broke out Sunday at a factory belonging to Chinese battery giant CATL, which supplies electric vehicle makers including Tesla, but only a “relatively small” impact on operations is expected, the company said.
A CATL spokesperson said no injuries or casualties had occurred at the plant in the coastal city of Ningde, and that “the reasons behind this accident are still under investigation”.
Emergency services were sent to the plant to fight the fire and to organise the evacuation of any people who were inside the 15,000 square metre (160,000 square feet) site, a statement by the Dongqiao Economic and Technological Development Zone said.
Firefighters were alerted to the blaze just before 11:30 AM local time (0330 GMT).
It was not immediately clear what was produced at the plant, CATL’s base in the eastern province of Fujian, but the company said the effect of the now extinguished fire would not be significant.
“The impact to CATL’s overall production operation is relatively small,” the spokesperson said.
Videos published by the Chinese business media outlet Cailianshe, and posted on the Weibo social network, showed parts of a large white building in flames with thick gray smoke rising into the air.
AFP could not immediately verify the authenticity of the images.
CATL was founded in 2011 and produces more than a third of the electric vehicle batteries sold worldwide for automakers that include Mercedes-Benz, BMW, Volkswagen, Toyota, Honda and Hyundai.
ehl-reb/des
Related Links
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news11 months ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera11 months ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Camera3 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Solar Energy11 months ago
Glencore eyes options on battery recycling project
-
world news11 months ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera11 months ago
Sony a9 III: what you need to know
-
TOP SCEINCE6 months ago
Can animals count?