Solar Energy
Synthesis of perovskite visible-light-absorbing semiconductor material

Narrow-gap semiconductors with the ability to use visible light have garnered significant interest thanks to their versatility. Now, scientists in Japan have developed and characterized a new semiconductor material for application in process components stimulated by light. The findings have, for the first time, suggested a new way to reduce the band gap in cheaper and non-toxic tin-based oxide semiconductors for efficient light-based applications.
Semiconductors that can exploit the omnipresent visible spectrum of light for different technological applications would serve as a boon to the material world. However, such semiconductors often do not come cheap and can often be toxic. Now, a group of material scientists from Tokyo Institute of Technology and Kyushu University have collaborated to develop a cheaper and non-toxic narrow-gap semiconductor material with potential ‘light-based’ or photofunctional applications, according to a recent study published in Chemistry of Materials.
Tin-containing oxide semiconductors are cheaper than most semiconductor materials, but their photofunctional applications are constrained by a wide optical band gap. The aforementioned team of scientists, led by Dr. Kazuhiko Maeda, Associate Professor at the Department of Chemistry, Tokyo Institute of Technology, developed a perovskite-based semiconductor material that is free of toxic lead and can absorb a wide range of visible light.
The team “doped,” or intentionally introduced, hydride ions into the tin-containing semiconductor material. In doing so, they successfully reduced the band gap from 4 eV to 2 eV, due to the chemical reduction of the tin component that accompanied the hydride ion doping.
The scientists were also able to pinpoint a crucial tin reduction reaction in the semiconductor material through physicochemical measurements. This reduction leads to the generation of a “tin lone electron pair,” whose different electronic states notably contribute to the visible light absorption of the material. They also attribute this desired property to the prior introduction of oxygen defects into the material.
Highlighting the importance of the oxygen defects, Dr. Maeda, who is also a corresponding author of the study, explains, “The prior introduction of oxygen defects into BaSnO3 by Y3+ substitution for Sn4+ is also indispensable to realize a significant reduction of the band gap.”
To confirm that the developed semiconductor material is indeed photofunctional, the scientists tested the applicability of the semiconductor material in a photoelectrode. They observed that the developed material gave a clear anodic photoresponse up to the expected 600 nm.
Speaking about the impact of the study, Dr. Katsuro Hayashi, Professor of the Faculty of Engineering, Kyushu University, and the other corresponding author of the study, says, “Overall, the study has enabled a giant leap in the development of a cheaper, non-toxic, narrow optical band gap, tin-containing semiconductor material for practical applications in solar cells, photocatalysis and pigments.”
Thanks to the efforts of the researchers, we can expect significant advancements in the development of several more novel lead-free visible-light absorbing materials with myriad applications.
Solar Energy
Star Catcher showcases space energy beaming tech at Jacksonville stadium

Star Catcher showcases space energy beaming tech at Jacksonville stadium
by Clarence Oxford
Los Angeles CA (SPX) Mar 24, 2025
Star Catcher Industries, Inc. (“Star Catcher”), a leader in the field of space-to-space energy transfer, has completed its first public demonstration of space power beaming technology. This milestone event, held at EverBank Stadium in Jacksonville, Florida, marks significant progress toward the development of a space-based energy grid designed to provide uninterrupted power to satellites and space infrastructure.
During the demonstration, Star Catcher deployed its proprietary system to harness concentrated solar energy and beam it over a distance exceeding 100 meters. The energy was transmitted to a series of standard satellite solar panels, effectively showcasing the system’s compatibility with existing spacecraft hardware. This demonstration highlighted the adaptability of Star Catcher’s technology, which requires no modifications to current satellite power systems, allowing seamless integration into existing orbital platforms.
“This demonstration marks the first end-to-end test of our space power beaming technology, proving we can collect and wirelessly transmit energy with the precision needed for space applications,” said Andrew Rush, Co-Founder and CEO of Star Catcher. “Today’s success puts us one step closer to eliminating power constraints in space and unlocking new capabilities for satellites and the customers they serve.”
The EverBank Stadium event represents a foundational achievement for the planned Star Catcher Network, an orbital power infrastructure intended to offer on-demand, continuous energy supply to satellites and other space-based assets. By validating the core functionality of its power transmission technology in a real-world setting, Star Catcher has demonstrated its readiness to move toward larger-scale applications.
Looking ahead, the company is preparing for a more ambitious trial at Space Florida’s Launch and Landing Facility (LLF) this summer. This future demonstration aims to transmit hundreds of watts of power wirelessly across a distance greater than one kilometer, energizing multiple simulated satellites simultaneously. The LLF site, historically used for Space Shuttle landings, will provide a fitting backdrop for this next phase of development.
Star Catcher’s momentum in advancing space power solutions is further bolstered by recent financial and governmental support. The firm secured a $12.25 million seed investment co-led by Initialized Capital and B Capital. In addition, it received an AFWERX SBIR Phase 1 contract to enhance its capabilities in space-based power transmission.
Rooted in Jacksonville, Star Catcher has deep ties to the local space innovation ecosystem. By hosting its inaugural technology demonstration at EverBank Stadium, in partnership with the Jacksonville Jaguars, the company reinforced its commitment to community involvement. The event also served as a unique educational platform, allowing local students to engage with groundbreaking space technology developed within their region.
Related Links
Star Catcher Industries
All About Solar Energy at SolarDaily.com
Solar Energy
Framatome and Perpetual Atomics to Scale Up Space Battery Production for Future Missions

Framatome and Perpetual Atomics to Scale Up Space Battery Production for Future Missions
by Sophie Jenkins
London, UK (SPX) Mar 24, 2025
Framatome and Perpetual Atomics have formalised a new strategic partnership through a Memorandum of Understanding (MoU), aiming to scale up the production of americium-based radioisotope power systems, often referred to as “space batteries.” Signed during the Farnborough International Space Show, the agreement outlines a joint effort to advance the industrial processing of americium into sealed sources for radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
These power systems, which generate heat through the natural decay of radioisotopes, can use that heat directly or convert it into electrical energy. Among available isotopes, americium-241 stands out due to its lengthy half-life of approximately 430 years, making it an optimal choice for space missions requiring sustained energy over extended durations.
The collaboration is designed to address the need for reliable energy solutions for deep space exploration, with a focus on industrialising the manufacturing processes to meet the demands of upcoming missions.
“We are delighted to collaborate with Perpetual Atomics to jointly pioneer the further development of nuclear power technology, pushing new frontiers in enabling deep space exploration. The partnership forges Perpetual Atomics’ cutting-edge technology in radioisotope nuclear power systems with Framatome’s global nuclear pedigree in production-scale industrialisation,” said Dr. Kason Bala, Chief Commercial Officer, UK Defence and Space at Framatome Ltd.
Professor Richard Ambrosi, Chief Scientific Officer, founder, and Director of Perpetual Atomics, commented: “The UK and Europe host a large inventory of americium, and this combined with the technology maturity, know-how, and industrial capability to scale production and manufacturing establishes an important foundation for the UK and European Space Agency (ESA) programmes. Perpetual Atomics looks forward to working closely with Framatome to develop industrialisation solutions for radioisotope power systems at scale.”
The agreement leverages Framatome’s extensive experience in nuclear manufacturing and regulatory compliance and Perpetual Atomics’ two decades of innovation in the field, much of which has been driven by the Space Nuclear Power group at the University of Leicester. Framatome Space and Framatome Ltd are expected to play significant roles in supporting lunar and Mars exploration missions under UK and ESA initiatives later this decade.
Related Links
Framatome
Powering The World in the 21st Century at Energy-Daily.com
Solar Energy
800-mn-euro battery factory to be built in Finland

800-mn-euro battery factory to be built in Finland
by AFP Staff Writers
Helsinki (AFP) Mar 20, 2025
A Chinese-Finnish company announced Thursday it would begin building a battery materials plant in Finland in April, the first of its kind in the Nordic country.
The plant will produce cathode active material, a key component in lithium-ion batteries used in electric vehicles and for energy storage, said Easpring Finland New Materials, a company co-owned by Finnish Minerals Group and Beijing Easpring Material Technology.
It said the investment was worth 800 million euros ($868 million).
The announcement came one week after a bankruptcy filing by Swedish battery maker Northvolt, which had planned to develop cathode production but dropped those plans to focus on battery cell production as it fought for survival.
Easpring Finland New Materials said commercial production was expected to begin in 2027.
The plant, to be located in Kotka in southeast Finland, will initially produce 60,000 tonnes of cathode active material annually.
At full production capacity, it could supply cathode material for the production of around 750,000 electric vehicles annually, the company said.
Matti Hietanen, the chief executive of Finnish Minerals Group, said the investment created an “entirely new kind of industry in Finland related to the production of lithium-ion batteries” and represented a European “spearhead project for the industry.”
The new plant will employ 270 people and an area of around 80 hectares had been reserved for its construction.
Related Links
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
TOP SCEINCE7 months ago
Searching old stem cells that stay young forever
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
world news5 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
world news5 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens