Solar Energy
DNV publishes world’s first recommended practice for floating solar power plants
DNV, the independent energy expert and assurance provider has published the world’s first recommended practice (RP) for floating solar power projects following a collaborative joint industry project (JIP) involving 24 industry participants.
The Recommended Practice (DNVGL-RP-0584) will provide commonly recognized guidance based on a list of technical requirements for accelerating safe, sustainable and sound design, development, operation and decommissioning of floating solar photovoltaic (FPV) projects.
Floating solar power is a promising renewable energy technology in which solar panels are installed on floating structures on the surface of suitable bodies of water. The technology offers great potential for green energy production, particularly in areas where there is a shortage of available land for large photovoltaic plants.
The wider adoption of floating solar power could scale up particularly in countries that have high population density and limited spare land. such as in many Asian nations.
Following the first projects in 2006, installed capacity for floating solar power was just 10 MW by 2015 but has accelerated considerably since then, reaching 2GW towards the end of 2020. It is estimated that the total global potential capacity for deploying floating solar power on manmade, inland waters alone could be as high as 4 TW with an expected pipeline of more than 10GW by 2025.
While FPV is a promising growing industry, there are a number of complexities associated with the installation of floating solar plants. The RP offers insight into the technical complexity of designing, building and operating on and in water, especially in terms of electrical safety, anchoring and mooring issues, operation and maintenance, and designing FPV plants that can withstand site-specific environmental conditions.
Ditlev Engel, CEO of Energy Systems at DNV said: “Floating solar is an untapped, fast-growing technology with huge potential and I hope this recommended practice will drive the adoption and scaling of this technology to accelerate the pace of the energy transition. With collaboration from leading companies around the world, it provides critical reassurance to the likes of investors and governments as well as leaders from across the energy industries that we are able to transition faster to a clean energy future and realize the goals as per the Paris agreement.
“With input from both our renewables and floating structures experts, this project perfectly demonstrates the strength and depth of our new Energy Systems business area.”
The JIP, which kicked off last summer, reviewed all aspects of developing floating solar projects on inland and near-shore waters. It focuses on five key topics: site conditions assessment, energy yield forecast, mooring and anchoring systems, floating structures, permitting and environmental impact.
DNV project manager Michele Tagliapietra said: “We created this recommended practice to ensure harmonized and quality approaches in developing floating solar power projects to increase confidence from investors, regulators and other stakeholders. The guidance of this recommended practice aims to increase quality, minimize risks and ultimately increase trust, avoiding failures and accidents which may put a break on the potential growth of this promising market.
“It has been a highly collaborative effort, for which we thank all the participants involved. It is encouraging to see how everyone is striving to increase the quality and reliability of this exciting industry.”
“Being pioneers of this floating solar market, we are delighted to see this JIP team work taking shape in the form of this Recommended Practice. We believe this is a great step towards unlocking the potential of floating solar”, said Olivier Philippart, Director at Ciel and Terre International, one of the 24 participants in the project.
The RP focuses on methodology to keep the RP as technology neutral as possible and provide functional requirements, recommendations and guidelines. It has a holistic system-level approach, including single key components as well as procedures and design considerations and focus on FPV projects in inland and near-shore water bodies.
Solar Energy
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency
by Simon Mansfield
Sydney, Australia (SPX) Dec 20, 2024
A team led by Prof. Meng Li from Henan University’s School of Nanoscience and Materials Engineering has unveiled an innovative approach to overcoming stability and efficiency challenges in tin-lead (Sn-Pb) perovskite solar cells. The researchers’ work focuses on optimizing the buried hole-selective interface using a specially designed self-assembled material, offering major implications for single-junction and tandem solar cell technologies.
Tin-lead perovskites are valued for their narrow bandgap properties, which position them as key materials for producing high-efficiency solar cells. However, energy level mismatches and degradation at the buried interface have constrained both their performance and long-term stability. Addressing these issues, Prof. Meng’s team designed a boronic acid-anchored hole-selective contact material, 4-(9H-carbazole-9-yl)phenylboronic acid (4PBA).
Compared to conventional materials, 4PBA demonstrated superior stability and compatibility at the substrate surface. Its high adsorption energy of -5.24 eV and significant molecular dipole moment (4.524 D) improved energy level alignment between the substrate and perovskite layer, facilitating efficient charge extraction. Additionally, the interface engineered using 4PBA improved perovskite crystallization and substrate contact, reducing defects and non-radiative recombination.
These advancements enabled Sn-Pb perovskite solar cells incorporating 4PBA to achieve a power conversion efficiency (PCE) of 23.45%. The material’s reduced corrosiveness also mitigated the degradation effects typically caused by PEDOT:PSS, a widely used hole-transport material, enhancing chemical stability and storage durability. The cells retained 93.5% of their initial efficiency after 2,000 hours of shelf storage.
“This approach offers a practical path to enhancing both the efficiency and stability of Sn-Pb perovskite solar cells, addressing energy level mismatches and interfacial stability concerns,” the research team commented.
The findings provide a foundation for advancing efficient and stable Sn-Pb perovskite solar cells and highlight the importance of interface engineering in next-generation photovoltaic technologies.
Research Report:Buried Hole-Selective Interface Engineering for High-Efficiency Tin-Lead Perovskite Solar Cells with Enhanced Interfacial Chemical Stability
Related Links
Solar Energy
New solar material advances green hydrogen production
New solar material advances green hydrogen production
by Simon Mansfield
Sydney, Australia (SPX) Dec 20, 2024
Researchers in nano-scale chemistry have made a significant stride in advancing the sustainable and efficient production of hydrogen from water using solar energy.
A collaborative international study led by Flinders University, with partners in South Australia, the US, and Germany, has identified a novel solar cell process that could play a crucial role in photocatalytic water splitting for green hydrogen production.
The research introduces a new class of kinetically stable ‘core and shell Sn(II)-perovskite’ oxide solar material. Paired with a catalyst developed by US researchers under Professor Paul Maggard, this material shows potential as a catalyst for the essential oxygen evolution reaction, a key step in generating pollution-free hydrogen energy.
The findings, published in The Journal of Physical Chemistry C, offer new insights into the development of carbon-free hydrogen technologies, leveraging renewable and greenhouse-gas-free power sources for high-performing and cost-effective electrolysis processes.
“This latest study is an important step forwards in understanding how these tin compounds can be stabilised and effective in water,” said Professor Gunther Andersson, lead author from the Flinders Institute for Nanoscale Science and Technology.
Professor Paul Maggard, from Baylor University, added, “Our reported material points to a novel chemical strategy for absorbing the broad energy range of sunlight and using it to drive fuel-producing reactions at its surfaces.”
Tin and oxygen compounds like those used in the study are already applied in diverse fields such as catalysis, diagnostic imaging, and therapeutic drugs. However, Sn(II) compounds are typically reactive with water and dioxygen, limiting their technological potential.
Global solar photovoltaic research continues to focus on developing cost-effective, high-performance perovskite-based systems as alternatives to conventional silicon and other existing technologies.
Hydrogen, often touted as a clean fuel, can be produced through various processes, including electrolysis powered by renewable energy, thermochemical water splitting using concentrated solar power, or waste heat from nuclear reactors. While fossil fuels and biomass can also generate hydrogen, the environmental and energy efficiency depends largely on the production method.
Solar-driven hydrogen production, which uses light to initiate the process, is emerging as a promising alternative for industrial-scale hydrogen generation.
This study builds on earlier research led by Professor Maggard, initially at North Carolina State University and now at Baylor University, and includes contributions from University of Adelaide experts such as Professor Greg Metha and collaborators from Universitat Munster in Germany. Professor Metha’s work explores the photocatalytic activity of metal clusters on oxide surfaces for reactor technologies.
Research Report:Chemical and Valence Electron Structure of the Core and Shell of Sn(II)-Perovskite Oxide Nanoshells
Related Links
Flinders University
All About Solar Energy at SolarDaily.com
Solar Energy
University of Houston scientists solving meteorological mysteries on Mars
University of Houston scientists solving meteorological mysteries on Mars
by Bryan Luhn for UH News
Houston TX (SPX) Dec 20, 2024
A groundbreaking achievement by scientists at the University of Houston is changing our understanding of climate and weather on Mars and providing critical insights into Earth’s atmospheric processes as well.
The study, led by Larry Guan, a graduate student in the Department of Physics at UH’s College of Natural Sciences and Mathematics, under the guidance of his advisors, Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and several world-renowned planetary scientists, generated the first-ever meridional profile of Mars’ radiant energy budget, or REB, which represents the balance or imbalance between absorbed solar energy and emitted thermal energy across the latitudes. On a global scale, an energy surplus leads to global warming, while a deficit results in global cooling. Furthermore, the meridional profile of Mars’ REB fundamentally influences weather and climate patterns on the red planet.
The findings are in a new paper just published in AGU Advances and will be featured in AGU’s prestigious science magazine EOS.
“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan said. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”
The profile, based on long-term observations from orbiting spacecraft, offers a detailed comparison of Mars’ REB to that of Earth, uncovering striking differences in the way each planet receives and radiates energy. While Earth exhibits an energy surplus in the tropics and a deficit in the polar regions, Mars displays the opposite configuration.
“On Earth, the tropical energy surplus drives warming and upward atmospheric motion, while the polar energy deficit causes cooling and downward atmospheric motion,” Jiang explained. “These atmospheric motions significantly influence weather and climate on our home planet. However, on Mars, we observe a polar energy surplus and a tropical energy deficit.”
That surplus, Guan says, is especially pronounced in Mars’ southern hemisphere during spring, playing a critical role in driving the planet’s atmospheric circulation and triggering global dust storms, the most prominent feature of Martian weather. These massive storms, which can envelop the entire planet, significantly alter the distribution of energy, providing a dynamic element that affects Mars’ weather patterns and climate.
“The interaction between dust storms and the REB, as well as with polar ice dynamics, brings to light the complex feedback processes that likely shape Martian weather patterns and long-term climate stability,” Guan said.
Earth’s global-scale energy imbalance has been recently discovered, which significantly contributes to global warming at a magnitude comparable to that caused by increasing greenhouse gases. Mars presents a distinct environment due to its thinner atmosphere and lack of anthropogenic effects. The research team is now examining potential long-term energy imbalances on Mars and their implications for the planet’s climate evolution.
“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li said. “This research not only deepens our knowledge of the red planet but also provides critical insights into planetary atmospheric processes.”
Research Report:Distinct Energy Budgets of Mars and Earth
Related Links
University of Houston
Mars News and Information at MarsDaily.com
Lunar Dreams and more
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Camera1 year ago
Sony a9 III: what you need to know
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies