Solar Energy
Rutgers selects SolarEdge for Agrivoltaics Research and Development

Rutgers selects SolarEdge for Agrivoltaics Research and Development
by Clarence Oxford
Los Angeles CA (SPX) Jul 03, 2024
SolarEdge Technologies reports that its technology has been selected by Rutgers, the State University of New Jersey, as part of an innovative research and demonstration program to explore the potential of dual use agrivoltaics (the combination of agricultural production and solar energy generation simultaneously on the same land) for farmers across the state.
Rutgers research will assist the Dual-Use Solar Energy Pilot Program that will be administered by the NJBPU. The pilot program is a three-year, 200 MW agrivoltaics initiative with the goal of exploring the feasibility and benefits of agrivoltaics. The pilot program is a collaborative effort including the NJBPU, the New Jersey Department of Agriculture, the State Agricultural Development Committee, the New Jersey Department of Environmental Protection, and the Rutgers Agrivoltaics Program.
The results and data from the research program will be used to inform the establishment of a permanent Dual-Use Solar Program in New Jersey. The Rutgers Agrivoltaics Program includes three sites, each using a different panel mounting method to investigate the impact on agricultural production and electricity generation:
+ Rutgers Animal Farm in New Brunswick has vertically mounted bifacial panels and will be used for the production of forage crops and beef cattle grazing (170 kWDC installed and grid-connected)
+ Snyder Research and Extension Farm in Pittstown has single-axis trackers and will be used for hay production (94.5 kWDC installed and 82.4 kWDC grid-connected)
+ Rutgers Agricultural Research and Extension Center in Bridgeton has single axis trackers with both single-wide and double-wide rows of panels and will be used for the production of vegetable and staple crops. (255 kWDC installed and 48.6 kWDC grid-connected)
+ At each site, the research will evaluate electricity output, using Module Level Power Electronics (MLPE) for the measurement and analysis of energy production.
Agrivoltaics is a fast-growing and hugely exciting sector that provides a solution for many of the business challenges that farmers are facing today from managing rising energy costs to moving to more sustainable production.
However, we are still at the start of this journey. The aim of our research is to develop knowledge that will help to establish practices that can help improve both the sustainability and viability of farms through safe and regulated adoption of solar energy. We are excited to be working with SolarEdge to achieve these goals, said Margaret Brennan-Tonetta, Director for Resource and Economic Development and Senior Associate Director of the New Jersey Agricultural Experiment Station.
Bertrand Vandewiele General Manager of SolarEdge in North America, said: Agrivoltaics is a perfect example of a real win-win. This practice allows for expanded solar development to address climate change, without the land-use challenges often associated with ground mounted solar developments. It can also provide benefits for farmers, allowing a stable revenue stream and protection against climate hazards. In the U.S., there are more than 500 Agrivoltaics sites, producing a total of 9 GW of solar energy.
These numbers are likely to grow as interest in Agrivoltaics has been greatly expanding, as indicated by the increase in support and funding for this sector. For example, the U.S. Department of Agricultures funding for Agrivoltaics more than tripled from 2021 to 2022.
Farmers are able to move to more sustainable and profitable production without substantially reducing space for growing crops in fact agrivoltaics can potentially boost the production of certain shade-tolerant crops by providing protection from direct sunlight, while the cooler temperature below the panels reduces water evaporation. Meanwhile, the end consumer can feel good about choosing produce from sustainable farms. Through this collaboration with Rutgers University, we look forward to playing our part in helping to advance the adoption of more sustainable and profitable farming practices.
Related Links
Rutgers Agrivoltaics
All About Solar Energy at SolarDaily.com
Solar Energy
A single molecule elevates solar module output and stability

A single molecule elevates solar module output and stability
by Sophie Jenkins
London, UK (SPX) Apr 24, 2025
A new molecule developed through international collaboration has been shown to significantly improve both the performance and durability of perovskite solar cells, according to a recent study published in *Science*. The discovery centers on a synthetic ionic salt named CPMAC, which originates from buckminsterfullerene (C60) and has been shown to outperform traditional C60 in solar applications.
Researchers from the King Abdullah University of Science and Technology (KAUST) played a key role in the development of CPMAC. While C60 has long been used in perovskite solar cells due to its favorable electronic properties, it suffers from stability issues caused by weak van der Waals interactions at the interface with the perovskite layer. CPMAC was engineered to address these shortcomings.
“For over a decade, C60 has been an integral component in the development of perovskite solar cells. However, weak interactions at the perovskite/C60 interface lead to mechanical degradation that compromises long-term solar cell stability. To address this limitation, we designed a C60-derived ionic salt, CPMAC, to significantly enhance the stability of the perovskite solar cells,” explained Professor Osman Bakr, Executive Faculty of the KAUST Center of Excellence for Renewable Energy and Sustainable Technologies (CREST).
Unlike C60, CPMAC forms ionic bonds with the perovskite material, strengthening the electron transfer layer and thereby enhancing both structural stability and energy output. Cells incorporating CPMAC demonstrated a 0.6% improvement in power conversion efficiency (PCE) compared to those using C60.
Though the gain in efficiency appears modest, the impact scales up dramatically in real-world energy production. “When we deal with the scale of a typical power station, the additional electricity generated even from a fraction of a percentage point is quite significant,” said Hongwei Zhu, a research scientist at KAUST.
Beyond efficiency gains, CPMAC also enhanced device longevity. Under accelerated aging tests involving high heat and humidity over 2,000 hours, solar cells containing CPMAC retained a significantly higher portion of their efficiency. Specifically, their degradation was one third that observed in cells using conventional C60.
Further performance evaluation involved assembling the cells into four-cell modules, offering a closer approximation to commercial-scale solar panels. These tests reinforced the molecule’s advantage in both durability and output.
The key to CPMAC’s success lies in its capacity to reduce defects within the electron transfer layer, thanks to the formation of robust ionic bonds. This approach circumvents the limitations posed by van der Waals forces typical of unmodified C60 structures.
Research Report:C60-based ionic salt electron shuttle for high-performance inverted perovskite solar modules
Related Links
KAUST Center of Excellence for Renewable Energy and Storage Technologies
All About Solar Energy at SolarDaily.com
Solar Energy
Indonesia says China’s Huayou to replace LGES in EV battery project

Indonesia says China’s Huayou to replace LGES in EV battery project
by AFP Staff Writers
Jakarta (AFP) April 23, 2025
China’s Zhejiang Huayou Cobalt is replacing South Korea’s LG Energy Solution as a strategic investor in a multibillion-dollar project to build an electric vehicle battery joint venture in Indonesia, officials said on Wednesday.
The South Korean company, which was part of a consortium that signed a 142 trillion rupiah ($8.4 billion) “Grand Project” in 2020, announced its withdrawal from the project this week, citing factors including market conditions and the investment environment.
Energy and Mineral Resources Minister Bahlil Lahadalia said LG Energy Solution’s decision would not significantly affect the project, which aims to establish a local electric vehicle battery value chain in Indonesia.
“Changes only occur at the investor level, where LG no longer continue its involvement… and has been replaced by a strategic partner from China, namely Huayou,” Bahlil said in a statement.
“Nothing has changed from the initial goal, namely making Indonesia as the center of the world’s electric vehicle industry.”
Indonesia, home to the world’s largest nickel reserve, has been seeking to position itself as a key player in the global electric vehicle supply chain by leveraging its vast reserve of the critical mineral to attract investments.
The government decided not to move forward with the South Korean company in the project due to the long negotiation process with the firm to realise its investment, Investment Minister Rosan Roeslani said.
Rosan cited Huayou’s familiarity with Indonesia as one of the reasons why the government chose the company to succeed LG Energy Solution.
“Huayou had invested in Indonesia,” Rosan said.
“They have sources to develop the industry going forward.”
LG Energy Solution said in a statement on Tuesday that it will continue to explore “various avenues of collaboration” with the Indonesian government, including in its battery joint venture.
HLI Green Power, a joint venture between LG Energy Solution and Hyundai Motor Group, operates Indonesia’s first electric vehicle battery plant, which was launched in 2024 with a production capacity of up to 10 Gigawatt hours (GWh) of cells annually.
Related Links
Solar Energy
Politecnico di Milano explores global potential of agrivoltaics for land use harmony

Politecnico di Milano explores global potential of agrivoltaics for land use harmony
by Erica Marchand
Paris, France (SPX) Apr 23, 2025
A research team from the Politecnico di Milano has presented new insights into how agrivoltaic systems could resolve growing tensions over land use between agricultural production and solar energy development. Led by Maddalena Curioni, Nikolas Galli, Giampaolo Manzolini, and Maria Cristina Rulli, the study demonstrates that integrating photovoltaic panels with crop cultivation can significantly mitigate land-use conflict while maintaining food output.
Published in the journal Earth’s Future, the study highlights that between 13% and 16% of existing ground-mounted solar installations have displaced former farmland, underscoring the competition for arable land. In contrast, the researchers propose that deploying agrivoltaic systems on between 22% and 35% of non-irrigated agricultural land could enable dual use without substantially affecting crop yields.
Using a spatial agro-hydrological model, the researchers simulated how 22 crop types respond to varying degrees of solar shading from photovoltaic panels. Their simulations covered a broad range of climates and geographies, generating a global suitability map for agrivoltaic deployment. The results underscore the feasibility of this approach in many regions, especially those with compatible crops and moderate solar intensity.
“Agrivoltaics cannot be applied everywhere, but according to our results, it would be possible to combine cultivation and energy production in many areas of the world without significant reductions in yield,” said Nikolas Galli, researcher at the Glob3Science Lab and co-author of the study.
Giampaolo Manzolini, professor in the Department of Energy, noted additional benefits: “Using the land for both cultivation and photovoltaic systems increases overall output per occupied surface area while reducing production costs. In addition, installing crops underneath the photovoltaic panels reduces the panel operating temperature and increases their efficiency.”
“This technology could help reduce land competition while improving the sustainability of agricultural and energy systems,” added Maria Cristina Rulli, who coordinated the research.
The team emphasizes that their findings could inform strategic policy decisions and investment strategies aimed at maximizing land productivity while supporting both food security and renewable energy goals.
Research Report:Global Land-Water Competition and Synergy Between Solar Energy and Agriculture
Related Links
Politecnico di Milano
All About Solar Energy at SolarDaily.com
-
TOP SCEINCE8 months ago
Searching old stem cells that stay young forever
-
Solar Energy4 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Indian Defense4 years ago
Configuration For 5th-Generation Advanced Medium Combat Aircraft (AMCA) Completed; TEJAS MK-2 Steel-Cutting Soon
-
world news6 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
world news6 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Gadgets4 years ago
Apple Accused of Slowing Down iPhones After Recent iOS Updates