Connect with us

Solar Energy

Rutgers selects SolarEdge for Agrivoltaics Research and Development

Published

on

Rutgers selects SolarEdge for Agrivoltaics Research and Development


Rutgers selects SolarEdge for Agrivoltaics Research and Development

by Clarence Oxford

Los Angeles CA (SPX) Jul 03, 2024






SolarEdge Technologies reports that its technology has been selected by Rutgers, the State University of New Jersey, as part of an innovative research and demonstration program to explore the potential of dual use agrivoltaics (the combination of agricultural production and solar energy generation simultaneously on the same land) for farmers across the state.

Rutgers research will assist the Dual-Use Solar Energy Pilot Program that will be administered by the NJBPU. The pilot program is a three-year, 200 MW agrivoltaics initiative with the goal of exploring the feasibility and benefits of agrivoltaics. The pilot program is a collaborative effort including the NJBPU, the New Jersey Department of Agriculture, the State Agricultural Development Committee, the New Jersey Department of Environmental Protection, and the Rutgers Agrivoltaics Program.



The results and data from the research program will be used to inform the establishment of a permanent Dual-Use Solar Program in New Jersey. The Rutgers Agrivoltaics Program includes three sites, each using a different panel mounting method to investigate the impact on agricultural production and electricity generation:



+ Rutgers Animal Farm in New Brunswick has vertically mounted bifacial panels and will be used for the production of forage crops and beef cattle grazing (170 kWDC installed and grid-connected)



+ Snyder Research and Extension Farm in Pittstown has single-axis trackers and will be used for hay production (94.5 kWDC installed and 82.4 kWDC grid-connected)



+ Rutgers Agricultural Research and Extension Center in Bridgeton has single axis trackers with both single-wide and double-wide rows of panels and will be used for the production of vegetable and staple crops. (255 kWDC installed and 48.6 kWDC grid-connected)



+ At each site, the research will evaluate electricity output, using Module Level Power Electronics (MLPE) for the measurement and analysis of energy production.



Agrivoltaics is a fast-growing and hugely exciting sector that provides a solution for many of the business challenges that farmers are facing today from managing rising energy costs to moving to more sustainable production.



However, we are still at the start of this journey. The aim of our research is to develop knowledge that will help to establish practices that can help improve both the sustainability and viability of farms through safe and regulated adoption of solar energy. We are excited to be working with SolarEdge to achieve these goals, said Margaret Brennan-Tonetta, Director for Resource and Economic Development and Senior Associate Director of the New Jersey Agricultural Experiment Station.



Bertrand Vandewiele General Manager of SolarEdge in North America, said: Agrivoltaics is a perfect example of a real win-win. This practice allows for expanded solar development to address climate change, without the land-use challenges often associated with ground mounted solar developments. It can also provide benefits for farmers, allowing a stable revenue stream and protection against climate hazards. In the U.S., there are more than 500 Agrivoltaics sites, producing a total of 9 GW of solar energy.



These numbers are likely to grow as interest in Agrivoltaics has been greatly expanding, as indicated by the increase in support and funding for this sector. For example, the U.S. Department of Agricultures funding for Agrivoltaics more than tripled from 2021 to 2022.



Farmers are able to move to more sustainable and profitable production without substantially reducing space for growing crops in fact agrivoltaics can potentially boost the production of certain shade-tolerant crops by providing protection from direct sunlight, while the cooler temperature below the panels reduces water evaporation. Meanwhile, the end consumer can feel good about choosing produce from sustainable farms. Through this collaboration with Rutgers University, we look forward to playing our part in helping to advance the adoption of more sustainable and profitable farming practices.


Related Links

Rutgers Agrivoltaics

All About Solar Energy at SolarDaily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

DGIST enhances quantum dot solar cell performance

Published

on

By

DGIST enhances quantum dot solar cell performance


DGIST enhances quantum dot solar cell performance

by Riko Seibo

Tokyo, Japan (SPX) Oct 04, 2024







A research team led by Professor Jongmin Choi from the Department of Energy Science and Engineering at DGIST, in collaboration with Gyeongsang National University’s Professor Tae Kyung Lee and Kookmin University’s Professor Younghoon Kim, has developed a new method that significantly boosts the performance and longevity of perovskite quantum dot solar cells. Their innovative approach addresses a key issue: surface distortions on quantum dots that hinder solar cell efficiency.

Perovskite quantum dots are widely regarded as essential for next-generation solar cells due to their high light-to-electricity conversion efficiency and scalability. However, the process of replacing the “ligands” on their surface often causes distortions, akin to crumpled paper, that degrade solar cell performance.



The research team tackled this problem by introducing short ligands that firmly grip both sides of the quantum dots. This method effectively restores the quantum dot’s distorted surface, resembling the process of flattening crumpled paper. By smoothing the surface, they significantly reduced defects and improved both the performance and the stability of the solar cells. The power conversion efficiency rose from 13.6% to 15.3%, and the cells maintained 83% of their performance over 15 days, marking a major advancement in solar cell technology.



“Through this research, we could minimize surface defects on the quantum dots and stabilize their surfaces by newly adopting these amphiphilic ligands, thereby significantly improving the efficiency and stability of the solar cells,” explained Professor Jongmin Choi. He also noted the team’s intention to extend this approach to other photoelectric devices in the future.



This study, a collaborative effort by DGIST, Gyeongsang National University, and Kookmin University, was supported by the National Research Council of Science and Technology, the DGIST R and D Program, and the New Faculty Research Foundation at Gyeongsang National University. The findings were published in the ‘Chemical Engineering Journal’ on September 15, 2024.



Research Report:Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots


Related Links

DGIST

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Philippines’ Marcos opens first EV battery plant

Published

on

By

Philippines’ Marcos opens first EV battery plant


Philippines’ Marcos opens first EV battery plant

by AFP Staff Writers

Manila (AFP) Sept 30, 2024






President Ferdinand Marcos inaugurated on Monday the first factory for electric vehicle batteries in the Philippines, calling it the “future” of clean energy.

The Australian-owned lithium-iron-phosphate factory aims to produce two gigawatt-hours of batteries per year by 2030, powering about 18,000 electric vehicles or nearly half a million home battery systems.

“We have worked very hard and tried to do our best to bring this kind of technology to the Philippines with a clear recognition that this is the future,” Marcos said in a livestreamed speech.

“As the first manufacturing plant in the Philippines for advanced iron phosphate batteries… (it) sets the stage for the Philippines to become a player in clean energy storage in our part of the world.”

Located in New Clark city north of Manila, the StB Giga Factory Inc. facility will create 2,500 local jobs and channel five billion pesos ($89.2 million) into the economy each year, Marcos said.

The investment aligns with the government’s efforts to “transition our country to renewable energy”, and would help Manila “entice more investors in renewable energy facilities in the country”, he added.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Fire breaks out at Chinese battery giant CATL plant

Published

on

By

Fire breaks out at Chinese battery giant CATL plant


Fire breaks out at Chinese battery giant CATL plant

by AFP Staff Writers

Beijing (AFP) Sept 29, 2024






A fire broke out Sunday at a factory belonging to Chinese battery giant CATL, which supplies electric vehicle makers including Tesla, but only a “relatively small” impact on operations is expected, the company said.

A CATL spokesperson said no injuries or casualties had occurred at the plant in the coastal city of Ningde, and that “the reasons behind this accident are still under investigation”.

Emergency services were sent to the plant to fight the fire and to organise the evacuation of any people who were inside the 15,000 square metre (160,000 square feet) site, a statement by the Dongqiao Economic and Technological Development Zone said.

Firefighters were alerted to the blaze just before 11:30 AM local time (0330 GMT).

It was not immediately clear what was produced at the plant, CATL’s base in the eastern province of Fujian, but the company said the effect of the now extinguished fire would not be significant.

“The impact to CATL’s overall production operation is relatively small,” the spokesperson said.

Videos published by the Chinese business media outlet Cailianshe, and posted on the Weibo social network, showed parts of a large white building in flames with thick gray smoke rising into the air.

AFP could not immediately verify the authenticity of the images.

CATL was founded in 2011 and produces more than a third of the electric vehicle batteries sold worldwide for automakers that include Mercedes-Benz, BMW, Volkswagen, Toyota, Honda and Hyundai.

ehl-reb/des

Tesla

Weibo

Mercedes-Benz Group

BAYERISCHE MOTOREN WERKE AG

Volkswagen

TOYOTA MOTOR

HONDA MOTOR

Hyundai Motor Company

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Trending