Connect with us

Solar Energy

Glencore eyes options on battery recycling project

Published

on

Glencore eyes options on battery recycling project


Glencore eyes options on battery recycling project

by AFP Staff Writers

Zurich (AFP) Nov 23, 2023






Glencore will relocate testing for its battery recycling centre project away from its site in Italy, the Swiss commodities giant told AFP on Thursday.

However, it is still studying the possibility of creating a large centre in Italy, it added.

Glencore, which is particularly active in metals trading, announced in May that it was teaming up with the Canadian recycling company Li-Cycle to launch a feasibility study into building a European lithium battery recycling centre at Portovesme, on the Italian island of Sardinia, where the group already has existing operations.

“Glencore has taken the decision to relocate the testing and demonstration phase to an alternative location outside Italy, that would allow for faster commissioning of such a demonstration project,” it told AFP in an email on Thursday.

The group, based in Baar in central Switzerland, did not specify where the tests would be carried out, but stressed that the assessment of its Sardinia site would continue.

“This development does not immediately impact the feasibility assessment of the larger hub project. The definite feasibility study is ongoing and remains focused on Portovesme,” it said.

“This initiative is important for our recycling strategy and aligns with Italy’s objectives for sustainable industry development,” it added.

Glencore is already established in Portovesme on the south coast of Sardinia.

Lead and zinc are processed at the Portovesme industrial complex, which has port access, infrastructure and hydrometallurgical facilities.

In a joint statement, the CGIL, FEMCA CISL and UILTEC trade unions criticised the handling of the process, saying they were concerned by the lack of a deadline given to Glencore and Li-Cycle, to the detriment of the investment.

Regional and national authorities “must clearly state whether they still want the development of industry in the country, certainly in compliance with environmental standards, but with the certainty of deadlines”, they wrote.

“The only positive element,” they added, “is that Glencore has confirmed the desire to continue the development of the definitive lithium project in Portovesme” while warning against “the current attitude of the region and the government”.

As countries shift gear from fossil fuel vehicles to electrified cars, recycling materials from batteries is becoming a major focus. Recycling would also ease dependence on certain countries for raw materials.

Regularly criticised by environmental organisations, often due to its coal activities, Glencore frequently stresses that it also processes important materials for the energy transition such as cobalt, which is used for electric vehicle batteries.

It also often highlights the recycling of metals to meet the strong demand for copper.

The project by Glencore and its Canadian partner aims to set up a European centre producing recycled materials for batteries, including the recycling of lithium-ion but also cobalt and nickel.

Battery recycling is one of the major challenges for the automotive sector as some 350 million electric cars are expected to be on the road worldwide by 2030, compared to 16.5 million in 2021, according to the International Energy Agency.

noo-burs/rjm/rl

Glencore

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

800-mn-euro battery factory to be built in Finland

Published

on

By

800-mn-euro battery factory to be built in Finland


800-mn-euro battery factory to be built in Finland

by AFP Staff Writers

Helsinki (AFP) Mar 20, 2025






A Chinese-Finnish company announced Thursday it would begin building a battery materials plant in Finland in April, the first of its kind in the Nordic country.

The plant will produce cathode active material, a key component in lithium-ion batteries used in electric vehicles and for energy storage, said Easpring Finland New Materials, a company co-owned by Finnish Minerals Group and Beijing Easpring Material Technology.

It said the investment was worth 800 million euros ($868 million).

The announcement came one week after a bankruptcy filing by Swedish battery maker Northvolt, which had planned to develop cathode production but dropped those plans to focus on battery cell production as it fought for survival.

Easpring Finland New Materials said commercial production was expected to begin in 2027.

The plant, to be located in Kotka in southeast Finland, will initially produce 60,000 tonnes of cathode active material annually.

At full production capacity, it could supply cathode material for the production of around 750,000 electric vehicles annually, the company said.

Matti Hietanen, the chief executive of Finnish Minerals Group, said the investment created an “entirely new kind of industry in Finland related to the production of lithium-ion batteries” and represented a European “spearhead project for the industry.”

The new plant will employ 270 people and an area of around 80 hectares had been reserved for its construction.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Nanocellulose infused with red onion extract shields solar cells from UV degradation

Published

on

By

Nanocellulose infused with red onion extract shields solar cells from UV degradation


Nanocellulose infused with red onion extract shields solar cells from UV degradation

by Robert Schreiber

Berlin, Germany (SPX) Mar 20, 2025






Researchers at the University of Turku in Finland have developed a bio-based film that provides high-performance UV protection for solar cells, utilizing nanocellulose treated with red onion skin extract. This marks the first comparative study of how various bio-derived UV filters perform over time.

Solar cells, susceptible to damage from ultraviolet radiation, are typically shielded by petroleum-derived films such as polyvinyl fluoride (PVF) or polyethylene terephthalate (PET). In an effort to reduce reliance on fossil fuels, researchers are exploring sustainable alternatives like nanocellulose, a material made by refining cellulose into nanoscale fibers that can be customized for UV blocking capabilities.



The study, conducted in collaboration with Aalto University in Finland and Wageningen University in the Netherlands, revealed that nanocellulose films dyed with red onion extract blocked 99.9% of UV rays up to 400 nanometres. This performance surpassed that of commercial PET-based filters, which served as a benchmark in the research.



“Nanocellulose films treated with red onion dye are a promising option in applications where the protective material should be bio-based,” stated Doctoral Researcher Rustem Nizamov from the University of Turku.



Researchers evaluated four types of nanocellulose films enhanced with red onion extract, lignin, or iron ions, all known for their UV-filtering properties. Among them, the film incorporating red onion extract demonstrated the most effective UV shielding.



Effective UV protection must be balanced with the ability to transmit visible and near-infrared light, essential for solar energy conversion. While materials like lignin excel in UV absorption, their dark hue hinders transparency. In contrast, the red onion-based film achieved over 80% light transmission at wavelengths between 650 and 1,100 nanometres, maintaining this level over extended testing.



To simulate prolonged outdoor use, the films were exposed to artificial light for 1,000 hours, equating to roughly one year of natural sunlight in central Europe. Researchers tracked changes in the films and solar cells through digital imaging.



“The study emphasised the importance of long-term testing for UV filters, as the UV protection and light transmittance of the other bio-based filters changed significantly over time. For example, the films treated with iron ions had good initial transmittance which reduced after aging,” tells Nizamov.



Tests focused on dye-sensitised solar cells, which are particularly prone to UV-induced deterioration. The findings also have broader implications for other solar technologies like perovskite and organic photovoltaics, where bio-based UV filters could play a crucial role.



“These results are also relevant for the UV protection of other types of solar cells, including perovskite and organic photovoltaics, as well as any application where the use of a bio-based UV filter is paramount,” Nizamov says.



Looking ahead, the researchers aim to create biodegradable solar cells that could serve as power sources in applications such as food packaging sensors.



“The forest industry is interested in developing new high-grade products. In the field of electronics, these may also be components for solar cells,” noted Kati Miettunen, Professor in Materials Engineering.



The University of Turku’s Solar Energy Materials and Systems (SEMS) group is exploring ways to integrate solar technologies into broader energy systems.



This work was part of the BioEST project, supported by the Research Council of Finland.



Sustainable Nanocellulose UV Filters for Photovoltaic Applications: Comparison of Red Onion (Allium cepa) Extract, Iron Ions, Research Report:and Colloidal Lignin


Related Links

University of Turku

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Space Solar teams with MagDrive to boost in-orbit solar power systems

Published

on

By

Space Solar teams with MagDrive to boost in-orbit solar power systems


Space Solar teams with MagDrive to boost in-orbit solar power systems

by Sophie Jenkins

London, UK (SPX) Mar 20, 2025






Space Solar, a leading force in the field of space-based solar power (SBSP), has formed a strategic alliance with UK propulsion technology company Magdrive to enhance the deployment of large-scale infrastructure in orbit. The agreement, unveiled during the Farnborough International Space Show (FISS), is formalized under the Space Propulsion and Infrastructure Innovation Initiative (SPI3), reflecting a concerted push to realize space-driven clean energy.

SPI3 is designed to help fulfil the UK’s long-term goal of producing scalable, sustainable energy directly from space. By integrating Magdrive’s advanced propulsion systems, the initiative addresses the complex challenge of transporting, assembling, and managing substantial SBSP infrastructure in orbit.



Space Solar plans to launch its first 30-megawatt SBSP platform within five years, and success hinges on the ability to control and maintain massive solar satellite structures. Magdrive’s propulsion solutions are poised to support upcoming demonstration missions by enabling essential orbital maneuvers, satellite assembly, and shape optimization.



“Innovation in propulsion is essential to making large-scale space infrastructure a reality,” said Sam Adlen, Co-CEO of Space Solar. “Space Solar and Magdrive share a vision of advancing sustainable space operations that benefit earth, and this collaboration will pave the way for new propulsion solutions that will be indispensable for space-based solar power and other large scale space infrastructure.”



This partnership is also set to strengthen the UK’s space sector by stimulating high-value job creation and technological advancement. It highlights the country’s dedication to leading innovation at the intersection of clean energy and aerospace.



As part of SPI3, both companies will collaborate on refining propulsion specifications tailored to SBSP systems and identify additional applications for these technologies within the broader context of UK-led space initiatives. The cooperation is a key step towards expanding the UK’s footprint in the global space economy and unlocking emerging opportunities in space-based energy markets.



“We’re excited to work with Space Solar, they’re building the future of space energy and infrastructure on a scale never seen before. By working together we’ll be propelling the space industry towards enabling sustainable life on earth. Here’s to the new space age!” said Mark Stokes, CEO, MagDrive.



United by a vision to deliver scalable energy solutions from space, Space Solar and Magdrive’s agreement represents a pivotal move toward the commercialization of SBSP. As Space Solar progresses toward critical mission milestones, incorporating Magdrive’s propulsion technology will bring the reality of space-derived clean energy closer than ever.


Related Links

Space Solar

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending