Connect with us

Solar Energy

Batteries are a hot topic for SPARRCI researchers

Published

on

Batteries are a hot topic for SPARRCI researchers

If you have flown commercially in recent years, you may have noticed that certain items with large lithium-ion batteries can’t be checked. Instead, they must be in your carry-on and turned off.

Objects with these batteries, such as hoverboards or even cell phones, have been known to spontaneously combust, especially if they are physically damaged somehow. The resulting fire presents a danger to people in their vicinity.

So, if these batteries aren’t allowed on airplanes unsupervised, using them to propel the fully electric aircraft of the future may come with some challenges and questions about safety.

Exploring the feasibility of predicting and preventing battery fires before they happen is the idea behind a NASA research activity called SPARRCI, or “Sensor-based Prognostics to Avoid Runaway Reactions and Catastrophic Ignition.”

The big goal is to create a “smart” battery system that would self-monitor, learn about itself as it goes, and if needed say “hey, I’m developing a problem, shut me down” well before it endangers the safety of its aircraft.

“Batteries are a hot topic. Pun intended,” said Brianne DeMattia, lead researcher for SPARRCI at NASA’s Glenn Research Center in Cleveland.

One of the safety threats posed by batteries in electrically propelled aircraft is fire. These larger batteries, like those needed to power hoverboards and cars, have been known to catch fire because of an effect called “thermal runaway.”

Large batteries are basically many cells of small batteries packaged together. If one cell has a malfunction and starts to heat up in temperature, it causes the neighboring cell to do the same. Eventually, the whole battery overheats and could start a fire.

Battery sensors like the ones used by our phones and computers only measure the temperature outside the battery. SPARRCI is designing batteries with sensors inside them to identify the conditions that lead to thermal runaway, then alert the aircraft’s operator to the potential trouble.

The operator would then be able to correct the problem or replace the battery before the dangerous overheating ever occurs. This new, fine-tuned view of the inside of a battery could lead to safer and better performing energy storage – a new generation of batteries.

“With current batteries, we just try to contain fire so it doesn’t spread. But the best approach is to try and prevent the overheating and fire entirely. That’s what we’re trying to do with SPARRCI,” DeMattia said.

Size Matters

Another research area of SPARRCI is battery size and power storage.

A typical remote control for a television uses a couple of AA-sized batteries. A small electric aircraft such as the X-57 Maxwell, NASA’s first all-electric aircraft, may need a battery with the equivalent power of more than 5,000 AA-sized batteries.

Currently, large batteries providing that kind of power must be packaged in bulky containers to make sure that if something gets hot or catches fire, the heat is insulated, protecting other battery cells and the vehicle.

The size and weight of these containers could be reduced in the future with SPARRCI’s ability to show what’s going on inside the battery.

If the aircraft’s pilot or maintenance crew know that thermal runaway could occur, the battery can be replaced and never have a chance to catch fire.

If fire isn’t a threat anymore, extra insulation isn’t required, and the battery’s overall size and weight can be reduced. This would allow more space inside the vehicle to be dedicated to energy storage, improving its range and available power.

Since the activity began in 2020, SPARCCI researchers have successfully begun working out how to install sensors inside batteries. The next step? Identify what conditions the sensors inside the battery should look for to detect imminent battery problems or failures.

The View Inside

SPARRCI is part of the Convergent Aeronautics Solutions (CAS) project, which is designed to give NASA researchers the resources they need to determine if their ideas to solve some of aviation’s biggest technical challenges are feasible and perhaps worthy of additional pursuit within NASA or industry.

One of the things that makes CAS activities like SPARRCI unique is the requirement for researchers from different technical disciplines and NASA field centers to collaborate and bring their unique expertise to bear on the problem.

For SPARRCI, that collaboration led to some memorable moments for battery and sensor researchers at NASA’s Langley Research Center in Virginia, who have been working with their counterparts at NASA Glenn.

The Langley researchers evaluated batteries from Glenn using a Scanning Electron Microscope (SEM), a device similar to the ultrasound machines used in doctors’ offices and hospitals.

“Our goal was to collect images of the guts of the battery during a test without having to open them up post-mortem. This allowed us to see conditions changing in real time and run non-destructive scans to get a sense of the ‘topography’ of the internal surfaces as they morphed during operation,” DeMattia said.

What they saw during the scans was, well, out of this world.

“As we used the SEM to scan images of these lithium metal surfaces inside the battery they sometimes looked like the surface of the Moon! It was one of the coolest things. We spent hours around the computer, ‘oohs’ and ‘ahs’ often thrown around, with an occasional ‘What on Earth is that?’ thrown in for good measure.”

“It’s not something that any of us have done or seen before, but the images did help us tie together the data we collected,” DeMattia said. “”We couldn’t have done this without the different disciplines coming together. It has been really exciting.”

SPARRCI was selected to be a two-year activity that began on Oct. 1, 2019. Interruptions in the pursuit prompted by the COVID-19 pandemic might lead to an extension, although nothing has been decided yet.

Once completed, information gathered, and experience gained during SPARRCI will be shared with others within NASA and the broader aviation community.

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Facebook CEO Mark Zuckerberg Shrugs Off Concerns Over Instagram Use for Kids

Leave a Reply

Solar Energy

Breakthrough new material brings affordable, sustainable future within grasp

Published

on

By

Breakthrough new material brings affordable, sustainable future within grasp


Breakthrough new material brings affordable, sustainable future within grasp

by Rashda Khan for Canepa News

Houston TX (SPX) Dec 23, 2024






While lithium-ion batteries have been the go-to technology for everything from smartphones and laptops to electric cars, there are growing concerns about the future because lithium is relatively scarce, expensive and difficult to source, and may soon be at risk due to geopolitical considerations. Scientists around the world are working to create viable alternatives.

An international team of interdisciplinary researchers, including the Canepa Research Laboratory at the University of Houston, has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance – paving the way for a more sustainable and affordable energy future.



The new material, sodium vanadium phosphate with the chemical formula NaxV2(PO4)3, improves sodium-ion battery performance by increasing the energy density – the amount of energy stored per kilogram – by more than 15%. With a higher energy density of 458 watt-hours per kilogram (Wh/kg) compared to the 396 Wh/kg in older sodium-ion batteries, this material brings sodium technology closer to competing with lithium-ion batteries.



“Sodium is nearly 50 times cheaper than lithium and can even be harvested from seawater, making it a much more sustainable option for large-scale energy storage,” said Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH and lead researcher of the Canepa Lab. “Sodium-ion batteries could be cheaper and easier to produce, helping reduce reliance on lithium and making battery technology more accessible worldwide.”

From Theory to Reality

The Canepa Lab, which uses theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies, collaborated with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Rea’ctivite’ et de Chimie des Solides, which is a CNRS laboratory part of the Universite’ de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matie`re Condense’e de Bordeaux, Universite’ de Bordeaux, Bordeaux, France for the experimental work on the project. This allowed theoretical modelling to go through experimental validation.

The researchers created a battery prototype using the new material, NaxV2(PO4)3, demonstrating significant energy storage improvements. NaxV2(PO4)3, part of a group called “Na superionic conductors” or NaSICONs, is designed to let sodium ions move smoothly in and out of the battery during charging and discharging.



Unlike existing materials, it has a unique way of handling sodium, allowing it to work as a single-phase system. This means it remains stable as it releases or takes in sodium ions. This allows the NaSICON to remain stable during charging and discharging while delivering a continuous voltage of 3.7 volts versus sodium metal, higher than the 3.37 volts in existing materials.



While this difference may seem small, it significantly increases the battery’s energy density or how much energy it can store for its weight. The key to its efficiency is vanadium, which can exist in multiple stable states, allowing it to hold and release more energy.



“The continuous voltage change is a key feature,” said Canepa. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

Possibilities for a Sustainable Future

The implications of this work extend beyond sodium-ion batteries. The synthesis method used to create NaxV2(PO4)3 could be applied to other materials with similar chemistries, opening new possibilities for advanced energy storage technologies. That could in turn, impact everything from more affordable, sustainable batteries to power our devices to help us transition to a cleaner energy economy.



“Our goal is to find clean, sustainable solutions for energy storage,” Canepa said. “This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly.”



A paper based on this work was published in the journal Nature Materials. Ziliang Wang, Canepa’s former student and now a postdoctoral fellow at Northwestern University, and Sunkyu Park, a former student of the French researchers and now a staff engineer at Samsung SDI in South Korea, performed much of the work on this project.



Research Report:Obtaining V2(PO4)3 by sodium extraction from single-phase NaxV2(PO4)3 (1 < x < 3) positive electrode materials


Related Links

Canepa Research Laboratory at the University of Houston

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Pioneering advancements in solid-state battery technology for energy storage

Published

on

By

Pioneering advancements in solid-state battery technology for energy storage


Pioneering advancements in solid-state battery technology for energy storage

by Riko Seibo

Tokyo, Japan (SPX) Dec 23, 2024






Recent strides in solid-state battery technology are setting the stage for a transformative era in energy storage. These advancements hold promise for revolutionizing electric vehicles and renewable energy systems through improved performance and safety. A focus on electrolyte innovation has been key to this progress, enabling the development of high-performance all-solid-state batteries (ASSBs).

A new review paper provides a comprehensive summary of advancements in inorganic solid electrolytes (ISEs), materials that are central to ASSBs. Researchers examined the roles of oxides, sulfides, hydroborates, antiperovskites, and halides not only as electrolytes but also as catholytes and interface layers, which collectively enhance battery performance and safety.



“We highlighted the recent breakthroughs in synthesizing these materials, honing our attention on the innovative techniques that enable the precise tuning of their properties to meet the demanding requirements of ASSBs,” said Eric Jianfeng Cheng, associate professor at Tohoku University’s Advanced Institute for Materials Research (AIMR). “Precise tuning is crucial for developing batteries with higher energy densities, longer life cycles, and better safety profiles than conventional liquid-based batteries.”



The review also delves into the electrochemical properties of ISEs, including ionic conductivity, stability, and electrode compatibility. Researchers evaluated current ASSB models and suggested emerging strategies that could drive the next generation of energy storage solutions.



However, challenges persist in the development of ASSBs, notably the limited compatibility between ISEs and electrodes, which can trigger interfacial reactions. Addressing these compatibility issues is vital to improving battery efficiency and longevity. The review outlines these challenges and provides insights into efforts aimed at overcoming them.



“Our comprehensive review underscores the importance of continued research and development in the field of solid-state batteries. By developing new materials, improving synthesis methods, and overcoming compatibility issues, current efforts are driving innovation toward practical ASSBs that could transform how we store and use energy,” Cheng added.



Research Report:Inorganic solid electrolytes for all-solid-state lithium/sodium-ion batteries: recent developments and applications


Related Links

Tohoku University

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency

Published

on

By

Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency


Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency

by Simon Mansfield

Sydney, Australia (SPX) Dec 20, 2024






A team led by Prof. Meng Li from Henan University’s School of Nanoscience and Materials Engineering has unveiled an innovative approach to overcoming stability and efficiency challenges in tin-lead (Sn-Pb) perovskite solar cells. The researchers’ work focuses on optimizing the buried hole-selective interface using a specially designed self-assembled material, offering major implications for single-junction and tandem solar cell technologies.

Tin-lead perovskites are valued for their narrow bandgap properties, which position them as key materials for producing high-efficiency solar cells. However, energy level mismatches and degradation at the buried interface have constrained both their performance and long-term stability. Addressing these issues, Prof. Meng’s team designed a boronic acid-anchored hole-selective contact material, 4-(9H-carbazole-9-yl)phenylboronic acid (4PBA).



Compared to conventional materials, 4PBA demonstrated superior stability and compatibility at the substrate surface. Its high adsorption energy of -5.24 eV and significant molecular dipole moment (4.524 D) improved energy level alignment between the substrate and perovskite layer, facilitating efficient charge extraction. Additionally, the interface engineered using 4PBA improved perovskite crystallization and substrate contact, reducing defects and non-radiative recombination.



These advancements enabled Sn-Pb perovskite solar cells incorporating 4PBA to achieve a power conversion efficiency (PCE) of 23.45%. The material’s reduced corrosiveness also mitigated the degradation effects typically caused by PEDOT:PSS, a widely used hole-transport material, enhancing chemical stability and storage durability. The cells retained 93.5% of their initial efficiency after 2,000 hours of shelf storage.



“This approach offers a practical path to enhancing both the efficiency and stability of Sn-Pb perovskite solar cells, addressing energy level mismatches and interfacial stability concerns,” the research team commented.



The findings provide a foundation for advancing efficient and stable Sn-Pb perovskite solar cells and highlight the importance of interface engineering in next-generation photovoltaic technologies.



Research Report:Buried Hole-Selective Interface Engineering for High-Efficiency Tin-Lead Perovskite Solar Cells with Enhanced Interfacial Chemical Stability


Related Links

Henan University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending