Connect with us

Solar Energy

Inexpensive battery charges rapidly for electric vehicles

Published

on

Inexpensive battery charges rapidly for electric vehicles

Range anxiety, the fear of running out of power before being able to recharge an electric vehicle, may be a thing of the past, according to a team of Penn State engineers who are looking at lithium iron phosphate batteries that have a range of 250 miles with the ability to charge in 10 minutes.

“We developed a pretty clever battery for mass-market electric vehicles with cost parity with combustion engine vehicles,” said Chao-Yang Wang, William E. Diefenderfer Chair of mechanical engineering, professor of chemical engineering and professor of materials science and engineering, and director of the Electrochemical Engine Center at Penn State. “There is no more range anxiety and this battery is affordable.”

The researchers also say that the battery should be good for 2 million miles in its lifetime.

They report Jan. 18 in Nature Energy that the key to long-life and rapid recharging is the battery’s ability to quickly heat up to 140 degrees Fahrenheit, for charge and discharge, and then cool down when the battery is not working.

“The very fast charge allows us to downsize the battery without incurring range anxiety,” said Wang.

The battery uses a self-heating approach previously developed in Wang’s center. The self-heating battery uses a thin nickel foil with one end attached to the negative terminal and the other extending outside the cell to create a third terminal. Once electrons flow it rapidly heats up the nickel foil through resistance heating and warm the inside of the battery. Once the battery’s internal temperature is 140 degrees F, the switch opens and the battery is ready for rapid charge or discharge.

Wang’s team modeled this battery using existing technologies and innovative approaches. They suggest that using this self-heating method, they can use low-cost materials for the battery’s cathode and anode and a safe, low-voltage electrolyte. The cathode is thermally stable, lithium iron phosphate, which does not contain any of the expensive and critical materials like cobalt. The anode is made of very large particle graphite, a safe, light and inexpensive material.

Because of the self-heating, the researchers said they do not have to worry about uneven deposition of lithium on the anode, which can cause lithium spikes that are dangerous.

“This battery has reduced weight, volume and cost,” said Wang. “I am very happy that we finally found a battery that will benefit the mainstream consumer mass market.”

According to Wang, these smaller batteries can produce a large amount of power upon heating – 40 kilowatt hours and 300 kilowatts of power. An electric vehicle with this battery could go from zero to 60 miles per hour in 3 seconds and would drive like a Porsche, he said.

“This is how we are going to change the environment and not contribute to just the luxury cars,” said Wang. “Let everyone afford electric vehicles.”

Source link

Continue Reading
6 Comments

6 Comments

  1. Pingback: Govt Works To End China Dependency On Li-Ion Batteries

  2. Pingback: Samsung Galaxy M62, Galaxy A32 4G, Galaxy A52 Support Pages Go Live; Galaxy A52 5G May Feature 120Hz Display - godsownmedia

  3. Pingback: Shining a light on the true value of solar power - godsownmedia

  4. Pingback: Realme X7 5G to Go on Sale Today for the First Time via Flipkart, Realme.com: Price, Specifications

  5. Pingback: The DJI FPV is an all-in-one solution to first-person-view drones

  6. Pingback: OPPO launches Find X3 Pro featuring 50MP ultra-wide camera and billion-color capture

Leave a Reply

Solar Energy

Project receives funding for advanced solar-thermal research

Published

on

By

Project receives funding for advanced solar-thermal research


Project receives funding for advanced solar-thermal research

by Sophie Jenkins

London, UK (SPX) Apr 12, 2024






The University of Surrey, leading a collaboration with the University of Bristol and Northumbria University, has received a GBP 1.1 million grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop solar-thermal devices. These devices aim to revolutionize the way we heat homes and generate power, differing from traditional solar cells by converting sunlight into heat for energy production.

The research focuses on creating surfaces that selectively absorb sunlight and emit heat through near-infrared radiation. This project leverages the combined expertise of the institutions in photonics, advanced materials, applied electromagnetics, and nanofabrication to address a global need for efficient solar energy utilization.



Professor Marian Florescu, Principal Investigator from Surrey, highlighted the importance of the project: “The sun provides an immense amount of energy daily, much more than we currently harness. By advancing these solar-absorbing surfaces, we aim to transform solar energy use into a sustainable powerhouse for our increasing energy needs.”



Goals of the project include developing high-temperature solar absorbers, enhancing the efficiency of solar-absorbing structures, and improving the management of heat generated from sunlight. Prototypes will be constructed to demonstrate these technologies.



Professor Marin Cryan, Co-Principal Investigator from the University of Bristol, explained their focus on thermionic solar cell technology, which uses concentrated sunlight to initiate electron emission for high-efficiency solar cells.



Dr. Daniel Ho, Co-Principal Investigator from Northumbria University, added: “Our university leads in thermophotovoltaic research, utilizing advanced thermal analysis techniques. We’re excited to contribute to groundbreaking developments in renewable energy.”


Related Links

University of Surrey

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Improving Solar and Wind Power Integration in the U.S. Grid

Published

on

By

Improving Solar and Wind Power Integration in the U.S. Grid


Improving Solar and Wind Power Integration in the U.S. Grid

by Clarence Oxford

Los Angeles CA (SPX) Apr 11, 2024






The Midcontinent Independent System Operator manages a high-voltage electricity network spanning from Manitoba to Louisiana, serving 45 million users. This vast operation requires maintaining a balance between the energy generated and the demand across its regions.

The traditional reliance on coal and natural gas power plants is changing. For example, wind farms in Iowa now generate over 64% of the state’s electricity, and recent initiatives like the Alliant Energy Solar Farm at Iowa State University represent the shift towards renewable energy sources. These sources, however, introduce variability and uncertainty into grid management.



Zhaoyu Wang, a Northrop Grumman associate professor of electrical and computer engineering at Iowa State, emphasized, The power system seeks certainty which is challenging with unpredictable natural resources like sun and wind.



Wang is leading the MODERNISE project, aimed at modernizing grid operations. The U.S. Department of Energy has earmarked a $3 million grant over three years for this initiative, with an additional $1.1 million coming from project collaborators including Argonne National Laboratory and Siemens Corp.



The project, titled Modernizing Operation and Decision-Making Tools Enabling Resource Management in Stochastic Environment, involves developing computational tools that allow for better integration and management of renewable energy sources into the grid.



Jennifer M. Granholm, U.S. Secretary of Energy, supported this initiative stating that effective integration of renewable resources is essential for deploying clean energy. The project is part of a larger $34 million investment by the DOE to develop technologies that enhance grid reliability and efficiency.



By aggregating smaller renewable energy resources into larger operational blocks, MODERNISE aims to improve grid stability and predictability. Bai Cui, project co-leader and assistant professor at Iowa State, explained that this approach allows operators to manage grid operations more effectively by understanding and handling the uncertainties of renewable supply sources.



This initiative promises to make grid operations more adaptable and efficient, critical for accommodating the increasing reliance on renewable energy.


Related Links

Iowa State University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Quantum Material Achieves Up to 190% Efficiency in Solar Cells

Published

on

By

Quantum Material Achieves Up to 190% Efficiency in Solar Cells


Quantum Material Achieves Up to 190% Efficiency in Solar Cells

by Clarence Oxford

Los Angeles CA (SPX) Apr 11, 2024






Researchers from Lehigh University have developed a material that significantly enhances the efficiency of solar panels.

A prototype incorporating this material as the active layer in a solar cell displays an average photovoltaic absorption rate of 80%, a high rate of photoexcited carrier generation, and an external quantum efficiency (EQE) reaching up to 190%. This figure surpasses the theoretical Shockley-Queisser efficiency limit for silicon-based materials, advancing the field of quantum materials for photovoltaics.



This work signifies a major advance in sustainable energy solutions, according to Chinedu Ekuma, professor of physics at Lehigh. He and Lehigh doctoral student Srihari Kastuar recently published their findings in the journal Science Advances. Ekuma highlighted the innovative approaches that could soon redefine solar energy efficiency and accessibility.



The material’s significant efficiency improvement is largely due to its unique intermediate band states, which are energy levels within the material’s electronic structure that are ideally positioned for solar energy conversion.



These states have energy levels in the optimal subband gaps-energy ranges capable of efficiently absorbing sunlight and producing charge carriers-between 0.78 and 1.26 electron volts.



Moreover, the material excels in absorbing high levels in the infrared and visible regions of the electromagnetic spectrum.



In traditional solar cells, the maximum EQE is 100%, which corresponds to the generation and collection of one electron for each photon absorbed. However, newer materials and configurations can generate and collect more than one electron per high-energy photon, achieving an EQE over 100%.



Multiple Exciton Generation (MEG) materials, though not yet widely commercialized, show immense potential for enhancing solar power system efficiency. The Lehigh-developed material utilizes intermediate band states to capture photon energy typically lost in traditional cells, including energy lost through reflection and heat production.



The research team created this novel material using van der Waals gaps, atomically small spaces between layered two-dimensional materials, to confine molecules or ions. Specifically, they inserted zerovalent copper atoms between layers of germanium selenide (GeSe) and tin sulfide (SnS).



Ekuma developed the prototype based on extensive computer modeling that indicated the system’s theoretical potential. Its rapid response and enhanced efficiency strongly indicate the potential of Cu-intercalated GeSe/SnS as a quantum material for advanced photovoltaic applications, offering a path for efficiency improvements in solar energy conversion, he stated.



While the integration of this quantum material into existing solar energy systems requires further research, the techniques used to create these materials are already highly advanced, with scientists mastering precise methods for inserting atoms, ions, and molecules.



Research Report:Chemically Tuned Intermediate Band States in Atomically Thin CuxGeSe/SnS Quantum Material for Photovoltaic Applications


Related Links

Lehigh University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.