TOP SCEINCE
Climate-change-triggered 2023 mega-landslide caused Earth to vibrate for nine days
A landslide in a remote part of Greenland caused a mega-tsunami that sloshed back and forth across a fjord for nine days, generating vibrations throughout Earth, according to a new study involving UCL researchers.
The initial event, not observed by human eye, was the collapse of a 1.2km-high mountain peak into the remote Dickson Fjord beneath, causing a backsplash of water 200 metres in the air, with a wave up to 110 metres high. This wave, extending across 10km of fjord, reduced to seven metres within a few minutes, the researchers calculated, and would have fallen to a few centimetres in the days after.
The team used a detailed mathematical model, recreating the angle of the landslide and the uniquely narrow and bendy fjord, to demonstrate how the sloshing of water would have continued for nine days, with little energy able to escape.
The model predicted that the mass of water would have moved back and forth every 90 seconds, matching the recordings of vibrations travelling in the Earth’s crust all around the globe.
The landslide, the researchers wrote, was a result of the glacier at the foot of the mountain thinning, becoming unable to hold up the rock-face above it. This was ultimately due to climate change. The landslide and tsunami were the first observed in eastern Greenland.
Co-author Dr Stephen Hicks, of UCL Earth Sciences, said: “When I first saw the seismic signal, I was completely baffled. Even though we know seismometers can record a variety of sources happening on Earth’s surface, never before has such a long-lasting, globally travelling seismic wave, containing only a single frequency of oscillation, been recorded. This inspired me to co-lead a large team of scientists to figure out the puzzle.
“Our study of this event amazingly highlights the intricate interconnections between climate change in the atmosphere, destabilisation of glacier ice in the cryosphere, movements of water bodies in the hydrosphere, and Earth’s solid crust in the lithosphere.
“This is the first time that water sloshing has been recorded as vibrations through the Earth’s crust, travelling the world over and lasting several days.”
The mysterious seismic signal — coming from a vibration through the Earth’s crust — was detected by seismometers all over the globe, from the Arctic to Antarctica. It looked completely different to frequency-rich ‘rumbles’ and ‘pings’ from earthquake recordings, as it contained only a single vibration frequency, like a monotonous-sounding hum.
When the study’s authors first discovered the signal, they made a note of it as a “USO”: unidentified seismic object.
At the same time, news of a large tsunami in a remote northeast Greenland fjord reached authorities and researchers working in the area.
The researchers joined forces in a unique multidisciplinary group involving 68 scientists from 40 institutions in 15 countries, combining seismometer and infrasound data, field measurements, on-the-ground and satellite imagery, and simulations of tsunami waves.
The team also used imagery captured by the Danish military who sailed into the fjord just days after the event to inspect the collapsed mountain-face and glacier front along with the dramatic scars left by the tsunami.
It was this combination of local field data and remote, global-scale observations that allowed the team to solve the puzzle and reconstruct the extraordinary cascading sequence of events.
Lead author Dr Kristian Svennevig, from the Geological Survey of Denmark and Greenland (GEUS), said: “When we set out on this scientific adventure, everybody was puzzled and no one had the faintest idea what caused this signal. All we knew was that it was somehow associated with the landslide. We only managed to solve this enigma through a huge interdisciplinary and international effort.”
He added: “As a landslide scientist, an additional interesting aspect of this study is that this is the first-ever landslide and tsunami observed from eastern Greenland, showing how climate change already has major impacts there.”
The team estimated that 25 million cubic metres of rock and ice crashed into the fjord (enough to fill 10,000 Olympic-sized swimming pools).
They confirmed the size of the tsunami, one of the largest seen in recent history, using numerical simulations as well as local data and imagery.
Seventy kilometres away from the landslide, four-metre-high tsunami waves damaged a research base at Ella Ø (island) and destroyed cultural and archaeological heritage sites across the fjord system.
The fjord is on a route commonly used by tourist cruise ships visiting the Greenland fjords. Fortunately, no cruise ships were close to Dickson Fjord on the day of the landslide and tsunami, but if they had been, the consequences of a tsunami wave of that magnitude could have been devastating.
Mathematical models recreating the width and depth of the fjord at very high resolution demonstrated how the distinct rhythm of a mass of water moving back and forth matched the seismic signal.
The study concluded that with rapidly accelerating climate change, it will become more important than ever to characterise and monitor regions previously considered stable and provide early warning of these massive landslide and tsunami events.
Co-author Thomas Forbriger, from Karlsruhe Institute of Technology, said: “We wouldn’t have discovered or been able to analyse this amazing event without networks of high-fidelity broadband seismic stations around the world, which are the only sensors that can truly capture such a unique signal.”
Co-author Anne Mangeney, from Université Paris Cité, Institut de Physique du Globe de Paris, said: “This unique tsunami challenged the classical numerical models that we previously used to simulate just a few hours of tsunami propagation. We had to go to an unprecedentedly high numerical resolution to capture this long-duration event in Greenland. This opens up new avenues in the development of numerical methods for tsunami modelling.”
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles
A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions
A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
TOP SCEINCE8 months ago
Can animals count?