Connect with us

Indian Defense

Failure of Pyro Or Fuel Systems Resulted In India Losing Rocket And Satellite

Published

on

Failure of Pyro Or Fuel Systems Resulted In India Losing Rocket And Satellite

Sriharikota: Failure of the ignitor or failure of the cryogenic engine to get ignited or even the failure of the avionics in sending the ignite signal are contemplated as the reasons for Indian rocket going down on Thursday early morning.

They also said the rocket systems could have failed as it was kept idle for over a year, due to technical and also due to the spread of Covid-19 pandemic.

India’s Geosynchronous Satellite Launch Vehicle-F10 (GSLV-F10) carrying the country’s first Geo-Imaging Satellite (GISAT-1) lifted off from the spaceport in Sriharikota in Andhra Pradesh.

The failure resulted in the loss of rocket and satellite both valued over several hundred crores of rupees and also the revenue opportunity for 10 years.

The GISAT-1/EOS-03, with a life span of 10 years, would have been the country’s first eye in the sky or earth observation satellite to be placed in geostationary orbit.

The Indian Space Research Organisation (ISRO) in a statement after the rocket’s failure said “GSLV-F10 launch took place on August 12, 2021 at 0543 Hrs IST as scheduled. Performance of first and second stages was normal. However, Cryogenic Upper Stage ignition did not happen due to technical anomaly. The mission couldn’t be accomplished as intended.”

What is that technical anomaly is the moot question.

“The cryogenic engine is a complex system and the failure is not due to design flaw,” former Chairman of Indian Space Research Organisation (ISRO) G. Madhavan Nair told IANS.

According to him, the ignitor/pyro systems could have ignited but the fuel might not have due to various reasons. Nair also agreed the rocket being kept idle for more than a year after it was readied for flight could have also affected the functionality of the components.

“It could be a failure in avionics in sending the ignite signal. Or the failure of igniter which is a pyro element where testing is done for few in a batch rather than every component. Moreover, there is long storage of components due to pandemic delay causing some unnoticed component failure in the ignition system,” another space sector official on the condition of anonymity told IANS.

“Cryo stage did not ignite is the cause – this is officially announced and can be seen in the curve,” the official added.

Originally the GISAT-1/EOS-03 was slated for launch on March 5, 2020, but hours before the launch, ISRO announced postponement of the mission owing to some technical glitch.

Soon after, the Covid-19 pandemic and the lockdown delayed the mission. The rocket had to be dismantled and cleaned up. Subsequently, the GISAT-1/EOS-03 launch was slated for March 2021 but due to problems in the satellite’s battery side, the flight got delayed again.

With the replacement of the battery, the satellite and the rocket were being readied for their flight at Sriharikota when the second wave of Covid-19 swept in, affecting many at the rocket launch centre.

Another space sector expert preferring anonymity told IANS “On seeing the videos captured by the cameras fixed at the rocket, one can conclude as to the cause of loss.”

“During launch ISRO did announce separation of the heat shield, shutting off of the second stage and firing of the cryogenic stage. Success of cryo ignition and normal thrust was announced,” the expert said.

“I would not be surprised that the heat shield did not get separated, though telemetry may be correct and the vehicle veers out of trajectory due to excess load of heat shield, apart from the satellite load,” he added.

“Non separation of heat shield even with four way redundancy and yet sending right telemetry, has been seen earlier. This phenomenon was seen in PSLV 39 launch with IRNSS-1H, on 31st August 2017. But due to the presence of an on board camera, the non separation of the heat shield was detected. Otherwise it could have been passed off as malfunctioning of the last stage of the rocket,” the expert remarked.

However Nair does not agree with this possibility.

“After the separation of the heat shield the rocket had travelled for several seconds on the plotted path. Had the heat shield not separated then the rocket would have veered away much earlier,” Nair said.

According to him, detailed flight data will be available a couple of days later.

The reason(s) for non-firing of the cryogenic engine will have to be probed by ISRO, if a faulty component was the reason.

Earlier in a GSLV rocket that went up, a component with higher dimension than what was designed was fixed and the rocket failed.

The Indian space agency does not insure its rockets and satellites launched from the country.

Ironically, Thursday’s failure comes on the birth anniversary of Vikram Sarabhai, the father of India’s space sector.

The 57.10 metre tall, 416 ton GSLV-F10 lifted off from the second launch pad at 5.43 a.m.

With a strong deep growl rose into the sky breaking free from the second launch pad here at the Satish Dhawan Space Centre. The GSLV-F10 is a three stage/engine rocket. The core of the first stage is fired with solid fuel and the four strap-on motors by liquid fuel. The second is the liquid fuel and the third is the cryogenic engine.

Everything went well as planned till the cryogenic engine got into picture at about five minutes into the rocket’s flight.

The ISRO had also announced the commencement/ignition of the cryogenic engine.

Just over five minutes into the rocket’s flight, the mission control centre at the spaceport here tensed up. The rocket was seen on the telemetry screen veering away from its plotted path. There was no data coming from the rocket.

Experts said the rocket and the satellite would have burnt in the atmosphere while falling down.

Source link

Continue Reading
Click to comment

Leave a Reply

Indian Defense

INS Arihant’s Nuke-Capable K-4 Submarine-Launched Ballistic Missile ‘Ready To Roll’

Published

on

By

INS Arihant’s Nuke-Capable K-4 Submarine-Launched Ballistic Missile ‘Ready To Roll’


NEW DELHI: India tested its nuclear capable K-4 submarine-launched ballistic missile (SLBM), designed to have a strike range of 3,500 km, for the second time in six days on Friday. The missile test, as the one conducted on January 19, was undertaken from an undersea platform in the shape of a submersible pontoon off the coast of Andhra Pradesh according to a report by Rajat Pandit of TOI.

The solid-fuelled K-4 missile is being developed by DRDO to arm the country’s nuclear-powered submarines in the shape of INS Arihant and its under-development sister vessels. INS Arihant, which became fully operational in November 2018 to complete India’s nuclear triad, is currently armed with the much shorter K-15 missiles with a 750 km range.

“The K-4 is now virtually ready for its serial production to kick-off. The two tests have demonstrated its capability to emerge straight from underwater and undertake its parabolic trajectory,” said a source.

India has the land-based Agni missiles, with the over 5,000-km Agni-V inter-continental ballistic missile now in the process of being inducted, and fighter jets jury-rigged to deliver nuclear weapons. But INS Arihant gives the country’s deterrence posture much more credibility because nuclear-powered submarines armed with nuclear-tipped missiles are considered the most secure, survivable and potent platforms for retaliatory strikes.

Once the K-4 missiles are inducted, they will help India narrow the gap with countries like the US, Russia and China, which have over 5,000-km range SLBMs. The K-4 missiles are to be followed by the K-5 and K-6 missiles in the 5,000-6,000 km range class.

The 6,000-ton INS Arihant, which is propelled by an 83 MW pressurised light-water reactor at its core, in turn, is to be followed by INS Arighat, which was launched in 2017. The next generation of nuclear submarines, currently called S-4 and S-4*, will be much larger in size.





Source link

Continue Reading

Indian Defense

After Upgradation, Sukhoi Su-30MKI Indigenisation To Reach 78%

Published

on

By

After Upgradation, Sukhoi Su-30MKI Indigenisation To Reach 78%


India has received clearance to upgrade 84 Sukhoi Su-30MKI fighter jets, which will result in 78% indigenization after the upgrade

In a significant step towards bolstering its military might with indigenously developed technology, India is poised to witness its Russian-origin Sukhoi Su-30MKI fighter jets evolve into a domestic platform. Speaking at a recent lecture.

The upgrade program is being led by Hindustan Aeronautics Limited (HAL) in partnership with the Indian Air Force and other partners. The upgrade is expected to cost US$7.5 billion.

The Defence Acquisition Council (DAC) granted Acceptance of Necessity (AoN) for the upgrade. The upgrade is part of India’s efforts to improve the capabilities of its primary fighter aircraft, it refers to as the “Super Sukhoi”.

This initiative is a part of a larger effort by the Indian Air Force to modernize its ageing fleet. Air Chief Marshal Chaudhari asserted the critical role of an offensive air force as demonstrated in current global conflicts and emphasized India’s move towards an indigenized arsenal. To this end, the IAF has been proactive, from upgrading its Mirage 2000 to enhancing its MiG-29 fleet.

In summary, the IAF’s commitment to updating their combat forces with the latest technology, including shifting to fifth-generation fighter jets, ensures operational preparedness and a strong deterrence capability. The gradual indigenization of its air fleet marks a pivotal shift in India’s defence landscape, reducing dependency on foreign imports and fostering technological sovereignty.





Source link

Continue Reading

Indian Defense

Akash Weapon System Exports For The Armenian Armed Forces Gathers Pace

Published

on

By

Akash Weapon System Exports For The Armenian Armed Forces Gathers Pace


According to unconfirmed reports, Armenia is a top contender for an export order for Akash SAM system manufactured by Bharat Dynamics Limited (BDL).

While there is no official confirmation because of the sensitivities involved, documents suggest that the order for the same has already been placed the report further added.
There are nine countries, in turn, which have shown interest in the indigenously-developed Akash missile systems, which can intercept hostile aircraft, helicopters, drones and subsonic cruise missiles at a range of 25-km. They are Kenya, Philippines, Indonesia, UAE, Bahrain, Saudi Arabia, Egypt, Vietnam and Algeria reported TOI.

The Akash export version will also be slightly different from the one inducted by the armed forces. The 100-km range air-to-air Astra missiles, now entering production after successful trials from Sukhoi-30MKI fighters, also have “good export potential”, said sources.

Akash is a “tried, tested and successfully inducted systems”. Indian armed forces have ordered Akash systems worth Rs 24,000 crore over the years, and MoD inked a contract in Mar 2023 of over Rs 9,100 crores for improved Akash Weapon System

BDL is a government enterprise under the Ministry of Defence that was established in 1970. BDL manufactures surface-to-air missiles and delivers them to the Indian Army. BDL also offers its products for export.

Akash Weapon System

The AWS is a Short Range Surface to Air Missile (SRSAM) Air Defence System, indigenously designed and developed by Defence Research and Development Organisation (DRDO). In order to meet aerial threats, two additional Regiments of AWS with Upgradation are being procured for Indian Army for the Northern borders. Improved AWS has Seeker Technology, Reduced Foot Print, 360° Engagement Capability and improved environmental parameters.

The project will give a boost to the Indian missile manufacturing industry in particular and the indigenous defence manufacturing ecosystem as a whole. The project has overall indigenous content of 82% which will be increased to 93% by 2026-27.

The induction of the improved AWS into the Indian Army will increase India’s self-reliance in Short Range Missile capability. This project will play a role in boosting the overall economy by avoiding outgo of precious foreign exchange to other countries, increasing employment avenues in India and encouraging Indian MSMEs through components manufacturing. Around 60% of the project cost will be awarded to the private industry, including MSMEs, in maintaining the supply chain of the weapon system, thereby creating large scale of direct and indirect employment.





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.