Connect with us

TOP SCEINCE

Fast-learning cuttlefish pass the ‘marshmallow test’

Published

on

Fast-learning cuttlefish pass the ‘marshmallow test’

Much like the popular TikTok challenge where kids resist eating snacks, cuttlefish can do the same! Cuttlefish can delay gratification — wait for a better meal rather than be tempted by the one at hand — and those that can wait longest also do better in a learning test, scientists have discovered.

This intriguing report marks the first time a link between self-control and intelligence has been found in an animal other than humans and chimpanzees. It is published this week in Proceedings of the Royal Society B.

The research was conducted at the Marine Biological Laboratory (MBL), Woods Hole, while lead author Alexandra Schnell of University of Cambridge, UK, was in residence there as a Grass Fellow. Among Schnell’s collaborators was MBL Senior Scientist Roger Hanlon, a leading expert in cephalopod behavior and joint senior author on the paper.

“We used an adapted version of the Stanford marshmallow test, where children were given a choice of taking an immediate reward (1 marshmallow) or waiting to earn a delayed but better reward (2 marshmallows),” Schnell says. “Cuttlefish in the present study were all able to wait for the better reward and tolerated delays for up to 50-130 seconds, which is comparable to what we see in large-brained vertebrates such as chimpanzees, crows and parrots.”

Cuttlefish that could wait longer for a meal also showed better cognitive performance in a learning task. In that experiment, cuttlefish were trained to associate a visual cue with a food reward. Then, the situation was reversed, so the reward became associated with a different cue. “The cuttlefish that were quickest at learning both of those associations were better at exerting self-control,” Schnell says.

Why cuttlefish have evolved this capacity for self-control is a bit mysterious. Delayed gratification in humans is thought to strengthen social bonds between individuals — such as waiting to eat so a partner can first — which benefits the species as a whole. It may also be a function of tool-building animals, who need to wait to hunt while constructing the tool.

But cuttlefish are not social species, and they don’t build tools. Instead, the authors suggest, delayed gratification may be a by-product of the cuttlefish’s need to camouflage to survive.

“Cuttlefish spend most of their time camouflaging, sitting and waiting, punctuated by brief periods of foraging,” Schnell says. “They break camouflage when they forage, so they are exposed to every predator in the ocean that wants to eat them. We speculate that delayed gratification may have evolved as a byproduct of this, so the cuttlefish can optimize foraging by waiting to choose better quality food.”

Finding this link between self-control and learning performance in a species outside of the primate lineage is an extreme example of convergent evolution, where completely different evolutionary histories have led to the same cognitive feature.

Other collaborators include joint senior author Nicola Clayton at University of Cambridge and scientists at Ripon College in Wisconsin and the Karl Landsteiner University of Health Science, Krems, Austria.

Story Source:
Materials provided by Marine Biological Laboratory. Original written by Diana Kenney. Note: Content may be edited for style and length.

Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Warming of Antarctic deep-sea waters contribute to sea level rise in North Atlantic, study finds

Published

on

By

Fast-learning cuttlefish pass the ‘marshmallow test’


Analysis of mooring observations and hydrographic data suggest the Atlantic Meridional Overturning Circulation deep water limb in the North Atlantic has weakened. Two decades of continual observations provide a greater understanding of the Earth’s climate regulating system.

A new study published in the journal Nature Geoscience led by scientists at University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory, found that human-induced environmental changes around Antarctica are contributing to sea level rise in the North Atlantic.

The research team analyzed two decades of deep sea oceanographic data collected by observational mooring programs to show that a critical piece of Earth’s global system of ocean currents in the North Atlantic has weakened by about 12 percent over the past two decades.

“Although these regions are tens of thousands of miles away from each other and abyssal areas are a few miles below the ocean surface, our results reinforce the notion that even the most remote areas of the world’s oceans are not untouched by human activity,” said the study’s lead author Tiago Biló, an assistant scientist at the Rosenstiel School’s NOAA Cooperative Institute for Marine and Atmospheric Studies.

As part of the NOAA-funded project DeepT (Innovative analysis of deep and abyssal temperatures from bottom-moored instrument), the scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic.

This shrinking deep-ocean branch — that scientists call the abyssal limb — is part of the Atlantic Meridional Overturning Circulation (AMOC), a three-dimensional system of ocean currents that act as a “conveyer belt” to distribute heat, nutrients, and carbon dioxide across the world’s oceans.

This near-bottom branch is comprised of Antarctic bottom water, which forms from the cooling of seawater in the Southern Ocean around Antarctica during winter months. Among the different formation mechanisms of this bottom water, perhaps the most important is the so-called brine rejection, a process that occurs when salty water freezes. As sea ice forms, it releases salt into the surrounding water, increasing its density. This dense water sinks to the ocean floor, creating a cold, dense water layer that spreads northward to fill all three ocean basins — the Indian, Pacific, and Atlantic oceans. During the 21st century, the researchers observed that the flow of this Antarctic layer across 16°N latitude in the Atlantic had slowed down, reducing the inflow of cold waters to higher latitudes, and leading to warming of waters in the deep ocean.

“The areas affected by this warming spans thousands of miles in the north-south and east-west directions between 4,000- and 6,000-meters of depth,” said William Johns, a co-author and professor of ocean sciences at the Rosenstiel School. “As a result, there is a significant increase in the abyssal ocean heat content, contributing to local sea level rise due to the thermal expansion of the water.”

“Our observational analysis matches what the numerical models have predicted — human activity could potentially impose circulation changes on the entire ocean,” said Biló. “This analysis was only possible because of the decades of collective planning and efforts by multiple oceanographic institutions worldwide.”



Source link

Continue Reading

TOP SCEINCE

Octopus inspires new suction mechanism for robots

Published

on

By

Fast-learning cuttlefish pass the ‘marshmallow test’


A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists at the University of Bristol.

The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock.

In their findings, published in the journal PNAS today, the researchers show how they were able create a multi-layer soft structure and an artificial fluidic system to mimic the musculature and mucus structures of biological suckers.

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body’s mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity.

Lead author Tianqi Yue explained: “The most important development is that we successfully demonstrated the effectiveness of the combination of mechanical conformation — the use of soft materials to conform to surface shape, and liquid seal — the spread of water onto the contacting surface for improving the suction adaptability on complex surfaces. This may also be the secret behind biological organisms ability to achieve adaptive suction.”

Their multi-scale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multi-layer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to just micrometres. The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on diverse surfaces but with minimal overflow.

Tianqi added: “We believe the presented multi-scale adaptive suction mechanism is a powerful new adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.

“Current industrial solutions use always-on air pumps to actively generate the suction however, these are noisy and waste energy.

“With no need for a pump, it is well known that many natural organisms with suckers, including octopuses, some fishes such as suckerfish and remoras, leeches, gastropods and echinoderms, can maintain their superb adaptive suction on complex surfaces by exploiting their soft body structures.”

The findings have great potential for industrial applications, such as providing a next-generation robotic gripper for grasping a variety of irregular objects.

The team now plan to build a more intelligent suction cup, by embedding sensors into the suction cup to regulate suction cup’s behaviour.



Source link

Continue Reading

TOP SCEINCE

One third of China’s urban population at risk of city sinking, new satellite data shows

Published

on

By

Fast-learning cuttlefish pass the ‘marshmallow test’


Land subsidence is overlooked as a hazard in cities, according to scientists from the University of East Anglia (UEA) and Virginia Tech.

Writing in the journal Science, Prof Robert Nicholls of the Tyndall Centre for Climate Change Research at UEA and Prof Manoochehr Shirzaei of Virginia Tech and United Nations University for Water, Environment and Health, Ontario, highlight the importance of a new research paper analysing satellite data that accurately and consistently maps land movement across China.

While they say in their comment article that consistently measuring subsidence is a great achievement, they argue it is only the start of finding solutions. Predicting future subsidence requires models that consider all drivers, including human activities and climate change, and how they might change with time.

The research paper, published in the same issue, considers 82 cities with a collective population of nearly 700 million people. The results show that 45% of the urban areas that were analysed are sinking, with 16% falling at a rate of 10mm a year or more.

Nationally, roughly 270 million urban residents are estimated to be affected, with nearly 70 million experiencing rapid subsidence of 10mm a year or more. Hotspots include Beijing and Tianjin.

Coastal cities such as Tianjin are especially affected as sinking land reinforces climate change and sea-level rise. The sinking of sea defences is one reason why Hurricane Katrina’s flooding brought such devastation and death-toll to New Orleans in 2005.

Shanghai — China’s biggest city — has subsided up to 3m over the past century and continues to subside today. When subsidence is combined with sea-level rise, the urban area in China below sea level could triple in size by 2120, affecting 55 to 128 million residents. This could be catastrophic without a strong societal response.

“Subsidence jeopardises the structural integrity of buildings and critical infrastructure and exacerbates the impacts of climate change in terms of flooding, particularly in coastal cities where it reinforces sea-level rise,” said Prof Nicholls, who was not involved in the study, but whose research focusses on sea-level rise, coastal erosion and flooding, and how communities can adapt to these changes.

The subsidence is mainly caused by human action in the cities. Groundwater withdrawal, that lowers the water table is considered the most important driver of subsidence, combined with geology and weight of buildings.

In Osaka and Tokyo, groundwater withdrawal was stopped in the 1970s and city subsidence has ceased or greatly reduced showing this is an effective mitigation strategy. Traffic vibration and tunnelling is potentially also a local contributing factor — Beijing has sinking of 45mm a year near subways and highways. Natural upward or downward land movement also occurs but is generally much smaller than human induced changes.

While human-induced subsidence was known in China before this study, Profs Nicholls and Shirzaei say these new results reinforce the need for a national response. This problem happens in susceptible cities outside China and is a widespread problem across the world.

They call for the research community to move from measurement to understanding implications and supporting responses. The new satellite measurements are delivering new detailed subsidence data but the methods to use this information to work with city planners to address these problems needs much more development. Affected coastal cities in China and more widely need particular attention.

“Many cities and areas worldwide are developing strategies for managing the risks of climate change and sea-level rise,” said Prof Nicholls. “We need to learn from this experience to also address the threat of subsidence which is more common than currently recognised.”



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.