Connect with us

Solar Energy

Scientists develop new method to create stable, efficient next-gen solar cells

Published

on

Scientists develop new method to create stable, efficient next-gen solar cells


Scientists develop new method to create stable, efficient next-gen solar cells

by Matthew Carroll for PSU News

University Park PA (SPX) Oct 30, 2023






Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique developed by a team of international scientists could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.

The scientists, including Penn State faculty Nelson Dzade, reported in the journal Nature Energy their new method for creating more durable perovskite solar cells that still achieve a high efficiency of 21.59% conversion of sunlight to electricity.



Perovskites are promising solar technology because the cells can be manufactured at room temperature using less energy than traditional silicon materials, making them more affordable and more sustainable to produce, according to Dzade, assistant professor of energy and mineral engineering in the John and Willie Leone Family Department of Energy and Mineral Engineering and co-author of the study. But the leading candidates used to make these devices, hybrid organic-inorganic metal halides, contain organic components that are susceptible to moisture, oxygen and heat, and exposure to real-world conditions can lead to rapid performance degradation, the scientists said.



One solution involves turning instead to all-inorganic perovskite materials like cesium lead iodide, which has good electrical properties and a superior tolerance to environmental factors. However, this material is polymorphic, meaning it has multiple phases with different crystalline structures. Two of the photoactive phases are good for solar cells, but they can easily convert to an undesirable non-photoactive phase at room temperature, which introduces defects and degrades the efficiency of the solar cell, the scientists said.



The scientists combined the two photoactive polymorphs of cesium lead iodide to form a phase-heterojunction – which can suppress the transformation to the undesirable phase, the scientists said. Heterojunctions are formed by stacking different semiconductor materials, like layers in a solar cell, with dissimilar optoelectronic properties. These junctions in solar devices can be tailored to help absorb more energy from the sun and convert it into electricity more efficiently.



“The beautiful thing about this work is that it shows the fabrication of phase heterojunction solar cells by utilizing two polymorphs of the same material is the way to go,” Dzade said. “It improves material stability and prevents interconversion between the two phases. The formation of a coherent interface between the two phases allows electrons to flow easily across the device, leading to enhanced power conversion efficiency. That is what we demonstrated in this piece of work.”



The researchers fabricated a device that achieved a 21.59% power conversion efficiency, among the highest reported for this type of approach, and excellent stability. The devices maintained more than 90% of the initial efficiency after 200?hours of storage under ambient conditions, Dzade said.



“When scaled from a laboratory to a real-world solar module, our design exhibited a power conversion efficiency of 18.43% for a solar cell area of more than 7 square inches (18.08 centimeters squared),” Dzade said. “These initial results highlight the potential of our approach for developing ultra-large perovskite solar cell modules and reliably assessing their stability.”



Dzade modeled the structure and electronic properties of the heterojunction at the atomic scale and found that bringing the two photoactive phases together created a stable and coherent interface structure, which promotes efficient charge separation and transfer – desirable properties for achieving high efficiency solar devices.



Dzade’s colleagues at Chonnam University in South Korea developed the unique dual deposition method for fabricating the device – depositing one phase with a hot-air technique and the other with triple-source thermal evaporation. Adding small amounts of molecular and organic additives during the deposition process further improved the electrical properties, efficiency and stability of the device, said Sawanta S. Mali, a research professor at Chonnam University in South Korea and lead author on the paper.



“We believe the dual deposition technique we developed in this work will have important implications for fabricating highly efficient and stable perovskite solar cells moving forward,” said Nelson Dzade, assistant professor of energy and mineral engineering in the John and Willie Leone Family Department of Energy and Mineral Engineering and co-author of the study.



The researchers said the dual deposition technique could pave the way for the development of additional solar cells based on all inorganic perovskites or other halide perovskite compositions. In addition to extending the technique to different compositions, future work will involve making the current phase-heterojunction cells more durable in real-world conditions and scaling them to the size of traditional solar panels, the researchers said.



“With this approach, we believe it should be possible in the near future to shoot the efficiency of this material past 25%,” Dzade said. “And once we do that, commercialization becomes very close.”



Also contributing were Chang Kook Hong, professor, and Jyoti Patil, research professor, at Chonnam National University, South Korea; Yu-Wu Zhong, professor, and Jiang-Yang Shao, researcher, at the Institute of Chemistry, Chinese Academy of Sciences; and Sachin Rondiya, assistant professor, Indian Institute of Science.



The National Research Foundation of Korea supported this work. Computer simulations were performed on the Roar Supercomputer in the Institute for Computational and Data Sciences at Penn State.



Research Report:Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency


Related Links

Penn State

All About Solar Energy at SolarDaily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Scientists Probe Declining Earbud Battery Longevity

Published

on

By

Scientists Probe Declining Earbud Battery Longevity


Scientists Probe Declining Earbud Battery Longevity

by Clarence Oxford

Los Angeles CA (SPX) Feb 05, 2025






Have you ever noticed how electronic devices, including wireless earbuds, seem to lose battery capacity faster the longer you use them? An international research team from The University of Texas at Austin set out to examine this familiar issue, known as battery degradation, by focusing on the earbuds that many people rely on daily. Through a series of x-ray, infrared, and other imaging approaches, the researchers investigated the hidden complexities behind these tiny devices and revealed why their battery life declines over time.

“This started with my personal headphones; I only wear the right one, and I found that after two years, the left earbud had a much longer battery life,” said Yijin Liu, an associate professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering, who led the new research published in Advanced Materials. “So, we decided to look into it and see what we could find.”



Their analysis showed that crucial earbud features – like the Bluetooth antenna, microphones, and circuits – compete with the battery in a very confined space, producing a microenvironment that is less than ideal. This situation results in a temperature gradient that damages the battery over time, with different sections of the cell experiencing variable temperatures.



Real-world factors also complicate matters. Frequent changes in climate, shifts in air quality, and a host of other environmental variables challenge the battery’s resilience. While cells are generally designed to endure harsh conditions, constant fluctuations can take their toll.



These discoveries highlight the importance of considering how batteries interact with devices such as phones, laptops, and even electric vehicles. Packaging solutions, strategic design decisions, and adaptations for user habits may all play a role in extending battery performance.



“Using devices differently changes how the battery behaves and performs,” said Guannan Qian, the first author of this paper and a postdoctoral researcher in Liu’s lab. “They could be exposed to different temperatures; one person has different charging habits than another; and every electric vehicle owner has their own driving style. This all matters.”



In conducting this study, Liu and his team worked closely with UT’s Fire Research Group, led by mechanical engineer Ofodike Ezekoye. They paired infrared imaging methods with their in-house x-ray technology at UT Austin and Sigray Inc. To expand their scope, they then teamed up with some of the world’s most advanced x-ray facilities.



Their collaborators included researchers from SLAC National Accelerator Laboratory’s Stanford Synchrotron Radiation Lightsource, Brookhaven National Laboratory’s National Synchrotron Light Source II, Argonne National Laboratory’s Advanced Photon Source, and the European Synchrotron Radiation Facility (ESRF) in France. These partnerships allowed them to observe battery behavior under more authentic operating conditions.



“Most of the time, in the lab, we’re looking at either pristine and stable conditions or extremes,” said Xiaojing Huang, a physicist at Brookhaven National Laboratory. “As we discover and develop new types of batteries, we must understand the differences between lab conditions and the unpredictability of the real world and react accordingly. X-ray imaging can offer valuable insights for this.”



Looking ahead, Liu says his team will continue analyzing battery performance in the settings people experience every day. They plan to expand their approach to larger batteries, such as those in smartphones, laptops, and electric vehicles, to learn more about their degradation patterns.



Research Report:In-device Battery Failure Analysis


Related Links

University of Texas at Austin

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Quantum factors elevate plant energy transport efficiency

Published

on

By

Quantum factors elevate plant energy transport efficiency


Quantum factors elevate plant energy transport efficiency

by Robert Schreiber

Munich, Germany (SPX) Feb 05, 2025






For countless engineers, converting sunlight into easily stored chemical energy stands as an enduring goal. Yet nature perfected this challenge billions of years ago. A recent study reveals that quantum mechanics, once thought to be limited to physics, is also essential for key biological processes.

Green plants and other photosynthetic organisms draw on quantum mechanical mechanisms to capture the sun’s energy. According to Prof. Jurgen Hauer: “When light is absorbed in a leaf, for example, the electronic excitation energy is distributed over several states of each excited chlorophyll molecule; this is called a superposition of excited states. It is the first stage of an almost loss-free energy transfer within and between the molecules and makes the efficient onward transport of solar energy possible. Quantum mechanics is therefore central to understanding the first steps of energy transfer and charge separation.”



Classical physics alone cannot completely describe how this phenomenon unfolds throughout green plants and in certain photosynthetic bacteria. Although the exact details remain only partly understood, Prof. Hauer and first author Erika Keil consider their new findings an important step toward uncovering how chlorophyll, the pigment behind leaf coloration, functions. Applying these insights to engineered photosynthesis devices could unlock unprecedented solar energy conversion efficiencies for both power production and photochemical applications.



In their investigation, the researchers focused on two portions of the light spectrum absorbed by chlorophyll: the low-energy Q band (yellow to red) and the high-energy B band (blue to green). In the Q region, two electronic states are quantum mechanically coupled, promoting virtually loss-free energy movement. The system subsequently relaxes via “cooling”, i.e. by releasing energy in the form of heat. These observations demonstrate that quantum mechanical processes can play a major role in shaping key biological functions.



Research Report:Reassessing the role and lifetime of Qx in the energy transfer dynamics of chlorophyll a


Related Links

Technical University of Munich

Darwin Today At TerraDaily.com





Source link

Continue Reading

Solar Energy

HZB sets new efficiency record for CIGS perovskite tandem solar cells

Published

on

By

HZB sets new efficiency record for CIGS perovskite tandem solar cells


HZB sets new efficiency record for CIGS perovskite tandem solar cells

by Robert Schreiber

Berlin, Germany (SPX) Feb 05, 2025






Researchers at Helmholtz Center Berlin for Materials and Energy (HZB) and Humboldt University Berlin have developed a CIGS-perovskite tandem solar cell that has set a new world record for efficiency, achieving 24.6%. The performance of the cell has been officially certified by the Fraunhofer Institute for Solar Energy Systems.

Thin-film solar cells, such as those based on copper, indium, gallium, and selenium (CIGS), require minimal material and energy to manufacture, making them an environmentally friendly alternative to conventional silicon-based solar cells. CIGS thin films can also be applied to flexible substrates, expanding their potential applications.



The new tandem solar cell developed by HZB and Humboldt University combines a CIGS bottom cell with a perovskite top cell. By optimizing the contact layers between these two components, the research team successfully increased efficiency to a record-breaking 24.6%. This milestone was confirmed by the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany.



This achievement was made possible through a collaborative effort among researchers. The top cell was developed by Thede Mehlhop, a master’s student at TU Berlin, under the supervision of Stefan Gall. The perovskite absorber layer was created in the joint laboratory of HZB and Humboldt University Berlin, while the CIGS sub-cell and contact layers were fabricated by HZB researcher Guillermo Farias Basulto. Additionally, the KOALA high-performance cluster system at HZB was used to deposit the perovskite and contact layers in a vacuum.



“At HZB, we have highly specialized laboratories and experts who are top performers in their fields. With this world record tandem cell, they have once again shown how fruitfully they work together,” said Prof. Rutger Schlatmann, spokesman for the Solar Energy Department at HZB.



HZB has a strong track record in achieving world records in solar cell efficiency, including past accomplishments in silicon-perovskite tandem cells and now in CIGS-perovskite tandem technology.



“We are confident that CIGS-perovskite tandem cells can achieve much higher efficiencies, probably more than 30%,” said Prof. Rutger Schlatmann.



Related Links

Helmholtz Center Berlin for Materials and Energy

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending