Connect with us

TOP SCEINCE

How shifting climates may have shaped early elephants’ trunks

Published

on

How shifting climates may have shaped early elephants’ trunks


Researchers have provided new insights into how ancestral elephants developed their dextrous trunks.

The study, published today as an eLife Reviewed Preprint, combines multiple analyses to reconstruct feeding behaviours in the extinct longirostrine elephantiforms- elephant-like mammals characterised by elongated lower jaws and tusks. The work is described by the editors as fundamental to our understanding of how the elongated lower jaw and long trunks evolved in these animals during the Miocene epoch, around 11-20 million years ago. It provides compelling evidence for the diversity of these structures in longirostrine gomphotheres, and their likely evolutionary responses to global climatic changes.

The findings may also shed light on why modern day elephants are the only animals able to feed themselves using their trunks.

Longirostrine gomphotheres are part of the proboscidean family — a group of mammals including elephants and known for their elongated and versatile trunks. Longirostrine gomphotheres are notable as they underwent a prolonged evolutionary phase characterised by an exceptionally elongated lower jaw, or mandible, which is not found in later proboscideans. It is thought that their elongated mandible and trunk may have co-evolved in this group, but this change among early to late proboscideans remains incompletely understood.

“During the Early to Middle Miocene, gomphotheres flourished across Northern China,” says lead author Dr. Chunxiao Li, a postdoctoral researcher at the University of Chinese Academy of Sciences, Beijing, China. “Across species there was huge diversity in the structure of the long mandible. We sought to explain why proboscideans evolved the long mandible and why it subsequently regressed. We also wanted to explore the role of the trunk in these animals’ feeding behaviours, and the environmental background for the co-evolution of their mandibles and trunks.”

Li and colleagues used comparative functional and eco-morphological investigations, as well as a feeding preference analysis, to reconstruct the feeding behaviour of three major families of longirostrine gomphotheres: Amebelodontidae, Choerolophodontidae and Gomphotheriidae.

To construct the feeding behaviours and determine the relation between the mandible and trunk, the team examined the crania and lower jaws of the three groups, sourced from three different museums. The structure of the mandible and tusks differed across the three groups, indicating differences in feeding behaviours. The mandibles of Amebelodontidae were generally shovel-like and the tusks were flat and wide. Gomphotheriidae had clubbed lower tusks and a more narrow mandible, while Choerolophodontidae completely lacked mandibular tusks and their lower jaw was long and trough-like.

Next, the team conducted an analysis of the animals’ enamel isotopes to determine the distribution and ecological niches of the three families. The results indicated that Choerolphontidae lived in a relatively closed environment, whereas Platybelodon, a member of the Amebelodontidae family, lived in a more open habitat, such as grasslands. Gomphotheriidae appeared to fill a niche somewhere in between these closed and open habitats.

A Finite Element analysis helped the team determine the advantages and disadvantages of the mandible and tusk structure between each group. Their data indicated that the Choerolophodontidae mandible was specialised for cutting horizontally or slanted-growing plants, which may explain the absence of mandibular tusks. The Gomphotheriidae mandible was found to be equally suited for cutting plants growing in all directions. Platybelodon had structures specialised for cutting vertically growing plants, such as soft-stemmed herbs, which would have been more common in open environments.

The three families also showed differences in their stages of trunk evolution, which could be inferred from the narial structure — the region surrounding the nostrils. The narial region in Choerolophodontidae suggested that they had a relatively primitive, clumsy trunk. In Gomphotheriidae, the narial region was most similar to modern day elephants, suggesting they had a relatively flexible trunk. The trunks of Platybelodons may be the first example of a proboscidean trunk with the ability to coil and grasp. The evolutionary level of the trunk appeared to relate to the ability of the mandible to cut horizontally, strongly suggesting a co-evolution between the trunk and the mandible in longirostrine gomphotheres.

During the Mid-Miocene Climate Transition, which caused regional drying and the expansion of more open ecosystems, Choerolophodontidae experienced a sudden regional extinction and Gomphotheriidae numbers also declined in Northern China. The study suggests that the development of the coiling and grasping trunk in Platybelodon allowed this group to survive in greater numbers in their open environments. This may also explain why other animals with trunks, such as tapirs, never developed such dextrous trunks as elephants, as they never moved into open lands.

“Our cross-disciplinary team is dedicated to introducing multiple quantitative research methods to explore paleontology,” says co-author Ji Zhang, associate professor of structural engineering at Huazhong University of Science and Technology, Wuhan, China. “Modern computational mechanics and statistics have injected new vitality into traditional fossil research.”

The main limitation of this work is the lack of discussion comparing the team’s results with the development of gigantism and long limbs in proboscideans from the same period, according to eLife’s editors. The authors add that such analysis could add to our understanding of how changing feeding behaviours related to wider differences in the animals’ body shapes and sizes during this time.

“Our findings demonstrate that multiple eco-adaptations have contributed to the diverse mandibular structure found in proboscideans,” concludes senior author Dr. Shi-Qi Wang, professor at the Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences. “Initially, the elongated mandible served as the primary feeding organ in proboscideans, and was a prerequisite for the development of the extremely long trunk. Open-land grazing drove the development of trunk coiling and grasping functions, and the trunk then became the primary tool for feeding, leading to the gradual loss of the long mandible. In particular, Platybelodons may have been the first proboscidean to evolve this grazing behaviour.”



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

‘Ice bucket challenge’ reveals that bacteria can anticipate the seasons

Published

on

By

How shifting climates may have shaped early elephants’ trunks


Bacteria use their internal 24-hour clocks to anticipate the arrival of new seasons, according to research carried out with the assistance of an ‘ice bucket challenge.’ 

This discovery may have profound implications for understanding the role that circadian rhythms – a molecular version of a clock – play in adapting species to climate change, from migrating animals to flowering plants.  

The team behind the findings gave populations of blue-green algae (cyanobacteria) different artificial day lengths at a constant warm temperature. Samples on plates received either short days, equinox days (equal light and dark), or long days, for eight days.  

After this treatment, the blue-green algae were plunged into ice for two hours and survival rates monitored.   

Samples that had been exposed to a succession of short days (eight hours light and 16 hours dark) in preparation for the icy challenge achieved survival rates of 75%, up to three times higher than colonies that had not been primed in this way. 

One short day was not enough to increase the bacteria’s resistance to cold. Only after several short days, and optimally six to eight days, did the bacteria’s life chances significantly improve. 

In cyanobacteria which had genes that make up their biological clock removed, survival rates were the same regardless of day lengths. This indicates that photoperiodism (the ability to measure the day-night cycle and change one’s physiology in anticipation of the upcoming season) is critical in preparing bacteria for longer-term environmental changes such as a new season or shifts in climate. 

“The findings indicate that bacteria in nature use their internal clocks to measure day length and when the number of short days reaches a certain point, as they do in autumn/fall, they ‘switch’ to a different physiology in anticipation of the wintry challenges that lie ahead,” explained first author of the study, Dr Luísa Jabbur, who was a researcher at Vanderbilt University, Tennessee, in the laboratory of Prof. Carl Johnson when this study took place, and is now a BBSRC Discovery Fellow at the John Innes Centre.  

The Johnson lab has a long history of studying the circadian clock of cyanobacteria, both from a mechanistic and an ecological perspective. 

Previous studies have shown that bacteria have a version of a biological clock, which could allow them to measure differences in day-night length, offering an evolutionary advantage. 

This study, which appears in Science, is the first time that anyone has shown that photoperiodism in bacteria has evolved to anticipate seasonal cues.  

Based on these findings a whole new horizon of scientific exploration awaits. A key question is: how does an organism with a lifespan of between six and 24 hours evolve a mechanism that enables it not merely to react to, but to anticipate, future conditions? 

“It’s like they are signalling to their daughter cells and their granddaughter cells, passing information that the days are getting short, you need to do something,” said Dr Jabbur. 

Dr Jabbur and colleagues at the John Innes Centre will, as part of her BBSRC Discovery Fellowship, use cyanobacteria as a fast-reproducing model species to understand how photoperiodic responses might evolve in other species during climate change, with hopeful applications to major crops.  

A key part of this work will be to understand more about the molecular memory systems by which information is passed from generation to generation in species. Research will investigate the possibility that an accumulation of compounds during the night on short days acts as a molecular switch that triggers change to a different physiology or phenotype.  

For Dr Jabbur the findings amount to an early-career scientific breakthrough in the face of initial scepticism from her scientific mentor and the corresponding author of the paper, Professor Carl Johnson. 

“As well as being a fascinating person and an inspiration, Carl sings in the Nashville Symphony Chorus, and he has an operatic laugh! It echoed round the department when I first outlined my idea for the icy challenge, to see if photoperiod was a cue for cyanobacteria in their natural element,” said Dr Jabbur. 

“To be fair he told me to go away and try it, and as I went, he showed me a sign on his door with the Frank Westheimer quote: ‘Progress is made by young scientists who carry out experiments that old scientists say would not work.’ 

“It did work, first time. Then I repeated the experiments. There is something very precious about looking at a set of plates with bacteria on them and realizing that in that moment you know something that nobody else knows.” 

Bacteria can anticipate the seasons: Photoperiodism in cyanobacteria appears in Science.  



Source link

Continue Reading

TOP SCEINCE

New filtration material could remove long-lasting chemicals from water

Published

on

By

How shifting climates may have shaped early elephants’ trunks


Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent studyby the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds, also known as forever chemicals, in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

The findings are described in the journal ACS Nano, in a paper by MIT postdoc Yilin Zhang, professor of civil and environmental engineering Benedetto Marelli, and four others from MIT.

PFAS chemicals are present in a wide range of products, including cosmetics, food packaging, water-resistant clothing, firefighting foams, and antistick coating for cookware. A recent study identified 57,000 sites contaminated by these chemicals in the U.S. alone. The U.S. Environmental Protection Agency has estimated that PFAS remediation will cost $1.5 billion per year, in order to meet new regulations that call for limiting the compound to less than 7 parts per trillion in drinking water.

Contamination by PFAS and similar compounds “is actually a very big deal, and current solutions may only partially resolve this problem very efficiently or economically,” Zhang says. “That’s why we came up with this protein and cellulose-based, fully natural solution,” he says.

“We came to the project by chance,” Marelli notes. The initial technology that made the filtration material possible was developed by his group for a completely unrelated purpose — as a way to make a labelling system to counter the spread of counterfeit seeds, which are often of inferior quality. His team devised a way of processing silk proteins into uniform nanoscale crystals, or “nanofibrils,” through an environmentally benign, water-based drop-casting method at room temperature.

Zhang suggested that their new nanofibrillar material might be effective at filtering contaminants, but initial attempts with the silk nanofibrils alone didn’t work. The team decided to try adding another material: cellulose, which is abundantly available and can be obtained from agricultural wood pulp waste. The researchers used a self-assembly method in which the silk fibroin protein is suspended in water and then templated into nanofibrils by inserting “seeds” of cellulose nanocrystals. This causes the previously disordered silk molecules to line up together along the seeds, forming the basis of a hybrid material with distinct new properties.

By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests.

The electrical charge of the cellulose, they found, also gave it strong antimicrobial properties. This is a significant advantage, since one of the primary causes of failure in filtration membranes is fouling by bacteria and fungi. The antimicrobial properties of this material should greatly reduce that fouling issue, the researchers say.

“These materials can really compete with the current standard materials in water filtration when it comes to extracting metal ions and these emerging contaminants, and they can also outperform some of them currently,” Marelli says. In lab tests, the materials were able to extract orders of magnitude more of the contaminants from water than the currently used standard materials, activated carbon or granular activated carbon.

While the new work serves as a proof of principle, Marelli says, the team plans to continue working on improving the material, especially in terms of durability and availability of source materials. While the silk proteins used can be available as a byproduct of the silk textile industry, if this material were to be scaled up to address the global needs for water filtration, the supply might be insufficient. Also, alternative protein materials may turn out to perform the same function at lower cost.

Initially, the material would likely be used as a point-of-use filter, something that could be attached to a kitchen faucet, Zhang says. Eventually, it could be scaled up to provide filtration for municipal water supplies, but only after testing demonstrates that this would not pose any risk of introducing any contamination into the water supply. But one big advantage of the material, he says, is that both the silk and the cellulose constituents are considered food-grade substances, so any contamination is unlikely.

“Most of the normal materials available today are focusing on one class of contaminants or solving single problems,” Zhang says. “I think we are among the first to address all of these simultaneously.”

The research team included MIT postdocs Hui Sun and Meng Li, graduate student Maxwell Kalinowski, and recent graduate Yunteng Cao PhD ’22, now a postdoc at Yale. The work was supported by the Office of Naval Research, the National Science Foundation, and the Singapore-MIT Alliance for Research and Technology.



Source link

Continue Reading

TOP SCEINCE

‘Some pterosaurs would flap, others would soar’ — new study further confirms the flight capability of these giants of the skies

Published

on

By

How shifting climates may have shaped early elephants’ trunks


Some species of pterosaurs flew by flapping their wings while others soared like vultures, demonstrates a new study published in the peer-reviewed Journal of Vertebrate Paleontology.

It has long been debated whether the largest pterosaurs could fly at all.

However, “remarkable” and “rare” three-dimensional fossils of two different large-bodied azhdarchoid pterosaur species — including one new-to-science — have enabled scientists to hypothesize that not only could the largest pterosaurs take to the air, but their flight styles could differ too.

The new findings are led by experts from the University of Michigan, in the US, the Natural Resources Authority and Yarmouk University, in Jordan, and the Saudi Geological Survey, in Saudi Arabia.

Their paper details how these fossils — which date back to the latest Cretaceous period (approximately 72 to 66 million years ago) — were remarkably three-dimensionally preserved within the two different sites that preserve a nearshore environment on the margin of Afro-Arabia, an ancient landmass that included both Africa and the Arabian Peninsula. The research team used high-resolution computed tomography (CT) scans to then analyze the internal structure of the wing bones.

“The dig team was extremely surprised to find three-dimensionally preserved pterosaur bones, this is a very rare occurrence,” explains lead author Dr Kierstin Rosenbach, from the Department of Earth and Environmental Sciences of the University of Michigan.

“Since pterosaur bones are hollow, they are very fragile and are more likely to be found flattened like a pancake, if they are preserved at all.

“With 3D preservation being so rare, we do not have a lot of information about what pterosaur bones look like on the inside, so I wanted to CT scan them.

“It was entirely possible that nothing was preserved inside, or that CT scanners were not sensitive enough to differentiate fossil bone tissue from the surrounding matrix.”

Luckily, though, what the team uncovered was “remarkable,” via “exciting internal structures not only preserved, but visible in the CT scanner.”

CT scans reveal one soars; one flaps!

Newly collected specimens of the already-known giant pterosaur, Arambourgiania philadelphiae, confirm its 10-meter wingspan and provide the first details of its bone structure. CT images revealed that the interior of its humerus, which is hollow, contains a series of ridges that spiral up and down the bone.

This resembles structures in the interior of wing bones of vultures. The spiral ridges are hypothesized to resist the torsional loadings associated with soaring (sustained powered flight that requires launch and maintenance flapping).

The other specimen analyzed was the new-to-science Inabtanin alarabia, which had a five-meter wingspan. The team named it after the place where it was excavated — near a large grape-colored hill, called Tal Inab. The generic name combines the Arabic words “inab,” for grape, and “tanin” for dragon. ‘Alarabia’ refers to the Arabian Peninsula.

Inabtanin is one of the most complete pterosaurs ever recovered from Afro-Arabia, and the CT scans revealed the structure of its flight bones was completely different from that of Arambourgiania.

The interior of the flight bones were crisscrossed by arrangement with struts that match those found in the wing bones of modern flapping birds.

This indicates it was adapted to resist bending loads associated with flapping flight, and so it is likely that Inabtanin flew this way — although this does not preclude occasional use of other flight styles too.

“The struts found in Inabtanin were cool to see, though not unusual,” says Dr Rosenbach.

“The ridges in Arambourgiania were completely unexpected, we weren’t sure what we were seeing at first!

“Being able to see the full 3D model of Arambourgiania’s humerus lined with helical ridges was just so exciting.”

What explains this difference?

The discovery of diverse flight styles in differently-sized pterosaurs is “exciting,” the experts state, because it opens a window into how these animals lived. It also poses interesting questions, like to what extent flight style is correlated with body size and which flight style is more common among pterosaurs.

“There is such limited information on the internal bone structure of pterosaurs across time, it is difficult to say with certainty which flight style came first,” Dr Rosenbach adds.

“If we look to other flying vertebrate groups, birds and bats, we can see that flapping is by far the most common flight behavior.

“Even birds that soar or glide require some flapping to get in the air and maintain flight.

“This leads me to believe that flapping flight is the default condition, and that the behavior of soaring would perhaps evolve later if it were advantageous for the pterosaur population in a specific environment; in this case the open ocean.”

Co-author Professor Jeff Wilson Mantilla, Curator at Michigan’s Museum of Paleontology, and Dr Iyad Zalmout, from the Saudi Geological Survey, found these specimens in 2007 at sites in the north and south of Jordan.

Professor Jeff Wilson Mantilla says the “variations likely reflect responses to mechanical forces applied on the pterosaurs’ wings during flight.”

Enabling further study of vertebrate flight

Concluding, Dr Rosenbach states: “Pterosaurs were the earliest and largest vertebrates to evolve powered flight, but they are the only major volant group that has gone extinct.

“Attempts to-date to understand their flight mechanics have relied on aerodynamic principles and analogy with extant birds and bats.

“This study provides a framework for further investigation of the correlation between internal bone structure and flight capacity and behavior, and will hopefully lead to broader sampling of flight bone structure in pterosaur specimens.”



Source link

Continue Reading

Trending