Connect with us

Solar Energy

Cobalt-free batteries could power cars of the future

Published

on

Cobalt-free batteries could power cars of the future


Cobalt-free batteries could power cars of the future

by Anne Trafton | MIT News

Boston MA (SPX) Jan 19, 2024






Many electric vehicles are powered by batteries that contain cobalt – a metal that carries high financial, environmental, and social costs.

MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used in lithium-ion batteries).



In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.



“I think this material could have a big impact because it works really well,” says Mircea Dinca, the W.M. Keck Professor of Energy at MIT. “It is already competitive with incumbent technologies, and it can save a lot of the cost and pain and environmental issues related to mining the metals that currently go into batteries.”



Dinca is the senior author of the study, which appears in the journal ACS Central Science. Tianyang Chen PhD ’23 and Harish Banda, a former MIT postdoc, are the lead authors of the paper. Other authors include Jiande Wang, an MIT postdoc; Julius Oppenheim, an MIT graduate student; and Alessandro Franceschi, a research fellow at the University of Bologna.



Alternatives to cobalt

Most electric cars are powered by lithium-ion batteries, a type of battery that is recharged when lithium ions flow from a positively charged electrode, called a cathode, to a negatively electrode, called an anode. In most lithium-ion batteries, the cathode contains cobalt, a metal that offers high stability and energy density.



However, cobalt has significant downsides. A scarce metal, its price can fluctuate dramatically, and much of the world’s cobalt deposits are located in politically unstable countries. Cobalt extraction creates hazardous working conditions and generates toxic waste that contaminates land, air, and water surrounding the mines.



“Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices. And, as you transition to a much higher proportion of electrified vehicles in the consumer market, it’s certainly going to get more expensive,” Dinca says.



Because of the many drawbacks to cobalt, a great deal of research has gone into trying to develop alternative battery materials. One such material is lithium-iron-phosphate (LFP), which some car manufacturers are beginning to use in electric vehicles. Although still practically useful, LFP has only about half the energy density of cobalt and nickel batteries.



Another appealing option are organic materials, but so far most of these materials have not been able to match the conductivity, storage capacity, and lifetime of cobalt-containing batteries. Because of their low conductivity, such materials typically need to be mixed with binders such as polymers, which help them maintain a conductive network. These binders, which make up at least 50 percent of the overall material, bring down the battery’s storage capacity.



About six years ago, Dinca’s lab began working on a project, funded by Lamborghini, to develop an organic battery that could be used to power electric cars. While working on porous materials that were partly organic and partly inorganic, Dinca and his students realized that a fully organic material they had made appeared that it might be a strong conductor.



This material consists of many layers of TAQ (bis-tetraaminobenzoquinone), an organic small molecule that contains three fused hexagonal rings. These layers can extend outward in every direction, forming a structure similar to graphite. Within the molecules are chemical groups called quinones, which are the electron reservoirs, and amines, which help the material to form strong hydrogen bonds.



Those hydrogen bonds make the material highly stable and also very insoluble. That insolubility is important because it prevents the material from dissolving into the battery electrolyte, as some organic battery materials do, thereby extending its lifetime.



“One of the main methods of degradation for organic materials is that they simply dissolve into the battery electrolyte and cross over to the other side of the battery, essentially creating a short circuit. If you make the material completely insoluble, that process doesn’t happen, so we can go to over 2,000 charge cycles with minimal degradation,” Dinca says.



Strong performance

Tests of this material showed that its conductivity and storage capacity were comparable to that of traditional cobalt-containing batteries. Also, batteries with a TAQ cathode can be charged and discharged faster than existing batteries, which could speed up the charging rate for electric vehicles.



To stabilize the organic material and increase its ability to adhere to the battery’s current collector, which is made of copper or aluminum, the researchers added filler materials such as cellulose and rubber. These fillers make up less than one-tenth of the overall cathode composite, so they don’t significantly reduce the battery’s storage capacity.



These fillers also extend the lifetime of the battery cathode by preventing it from cracking when lithium ions flow into the cathode as the battery charges.



The primary materials needed to manufacture this type of cathode are a quinone precursor and an amine precursor, which are already commercially available and produced in large quantities as commodity chemicals. The researchers estimate that the material cost of assembling these organic batteries could be about one-third to one-half the cost of cobalt batteries.



Lamborghini has licensed the patent on the technology. Dinca’s lab plans to continue developing alternative battery materials and is exploring possible replacement of lithium with sodium or magnesium, which are cheaper and more abundant than lithium.



Research Report:er: “A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries”


Related Links

Department of Chemistry

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Argonne to lead National Energy Storage Research Hub

Published

on

By

Argonne to lead National Energy Storage Research Hub


Argonne to lead National Energy Storage Research Hub

by Clarence Oxford

Los Angeles CA (SPX) Sep 05, 2024






The U.S. Department of Energy (DOE) has selected Argonne National Laboratory to lead the newly established Energy Storage Research Alliance (ESRA), a national hub focused on advancing energy storage technologies. The ESRA, co-led by DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Pacific Northwest National Laboratory (PNNL), is one of two new Energy Innovation Hubs announced by the DOE.

Bringing together nearly 50 leading researchers from three national laboratories and 12 universities, ESRA aims to address the most critical challenges in battery technology, such as safety, high-energy density, and the development of long-duration storage solutions using cost-effective and abundant materials. The initiative is designed to push the boundaries of energy storage science, fostering innovation and strengthening the competitive edge of the U.S. in this crucial field.



“The demand for high-performance, low-cost and sustainable energy storage devices is on the rise, especially those with potential to deeply decarbonize heavy-duty transportation and the electric grid,” stated Shirley Meng, ESRA director and chief scientist at the Argonne Collaborative Center for Energy Storage Science. “To achieve this, energy storage technology must reach levels of unprecedented performance, surpassing the capabilities of current lithium-ion technology. The key to making these transformative leaps lies in a robust research and development initiative firmly grounded in basic science.”



Leveraging decades of investment in fundamental science, ESRA will focus on transformative discoveries in materials chemistry, a deeper understanding of electrochemical processes at the atomic level, and establishing the scientific foundations necessary for major advancements in energy storage technology.



“ESRA creates an energy storage research ecosystem with the mission to rapidly innovate, shorten the time between basic discovery and technology development, and train the next-generation workforce,” commented Bryan McCloskey, ESRA deputy director for scientific thrusts and a faculty engineer at Berkeley Lab.



The success of ESRA’s efforts will lead to the development of high-energy batteries that are fire-resistant, capable of providing long-duration storage for multiple days, have a lifespan of several decades, and are constructed from low-cost, widely available materials.



“ESRA will pave the way for innovative energy storage solutions that drive both U.S. prosperity and security,” said Argonne Director Paul Kearns. “As the lead laboratory for ESRA under the Department of Energy’s Office of Science, Argonne takes pride in spearheading this collaborative effort that unites world-leading experts and taps the impressive scientific resources available in national labs and academia.”



The DOE has committed up to $62.5 million in funding for ESRA over the next five years.



In addition to its research goals, the Argonne-led hub will prioritize training a diverse, next-generation battery workforce to meet future manufacturing demands. This will be achieved through innovative training programs that involve industry, academia, and government partnerships.



“Cultivating a diverse workforce dedicated to safeguarding America’s energy resilience is key to ESRA’s mission,” noted Wei Wang, ESRA deputy director for crosscuts and director of the Energy Storage Materials Initiative at PNNL. “Through our strategic equity and inclusion initiatives, we plan to create a robust training ground for energy storage science from the undergraduate to postdoctoral levels.”



With Berkeley Lab and PNNL as co-leads, the ESRA collaboration brings together comprehensive expertise across the energy storage spectrum. Their state-of-the-art capabilities in technology discovery, modeling and simulation, and materials synthesis and characterization complement those of Argonne, setting the stage for significant advancements in energy storage.



Argonne is joined by 14 partners in this initiative, all of whom are deeply involved in ESRA’s scientific endeavors, governance, strategic development, and the training of the next generation of battery scientists and engineers. This collaboration among national laboratories and universities is vital for discovering new materials, accelerating the development of technology, and commercializing new energy storage innovations.


Related Links

Argonne Collaborative Center for Energy Storage Science

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’

Published

on

By

UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’


UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’

by AFP Staff Writers

Beijing (AFP) Sept 5, 2024






United Nations Secretary-General Antonio Guterres told African leaders Thursday that expanding ties between China and the continent could “drive the renewable energy revolution”.

Guterres and more than 50 African leaders are attending this week’s China-Africa forum, according to state media.

Guterres told the gathering that “China’s remarkable record of development — including on eradicating poverty — provides a wealth of experience and expertise”.

“It can be a catalyst for key transitions on food systems and digital connectivity,” he said.

“And as home to some of the world’s most dynamic economies, Africa can maximise the potential of China’s support in areas from trade to data management, finance and technology,” Guterres added.

Guterres also told the leaders it was time to correct “historic injustices” against the continent.

“It is outrageous… that the continent of Africa has no permanent seat on the Security Council,” he said.

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Major Qatari plant to double solar capacity by 2030: minister

Published

on

By

Major Qatari plant to double solar capacity by 2030: minister


Major Qatari plant to double solar capacity by 2030: minister

by AFP Staff Writers

Doha (AFP) Sept 1, 2024






A large new solar plant planned in Qatar will double the Gulf emirate’s previously projected renewable energy capacity by 2030, Qatari Energy Minister Saad al-Kaabi announced on Sunday.

The photovoltaic farm, which will be built in the Dukhan area some 80 kilometres (50 miles) west of the capital Doha, will increase the gas-rich state’s solar production capacity to four gigawatts by the end of the decade, Kaabi said.

The plant “that will be established in Dukhan area will produce 2,000 megawatts, which is twice more than the capacity of Qatar’s production of solar energy of the current projects,” the minister, who is also chief executive of state-owned QatarEnergy, said.

In October 2022, Qatar inaugurated its first large-scale solar farm at al-Kharsaah, west of Doha. The emirate announced in August of the same year another solar project with two plants at Ras Laffan in the north.

Through the combined projects, including at Dukhan, Qatar would achieve “4,000 megawatts of clean energy by 2030”, Kaabi said.

This will “constitute 30 percent of the total production of energy of the state of Qatar” with a yearly reduction of “4.7 million tonnes of CO2 emissions,” he added.

Kaabi said the existing projects should produce 1.7 gigawatts of energy “in first quarter of next year, or early next year”.

The energy minister also announced plans to more than double Qatar’s urea production making the country the largest producer of the fertiliser in the world by the end of the decade.

He said Qatar would “maximise the production of chemical fertilisers” through “a complex with global standards” which would “increase our production capacity from 6 million tonnes annually to more than 12.4 million tonnes annually”.

Qatar is one of the world’s top liquefied natural gas producers alongside the United States, Australia and Russia. Natural gas is a major ingredient in urea manufacturing.

In February, Qatar announced plans to expand its output from its North Field project, saying it will boost capacity to 142 million tonnes per year before 2030.

Over the past year, Qatar has inked a series of long-term LNG deals with France’s Total, Britain’s Shell, India’s Petronet, China’s Sinopec and Italy’s Eni among others.

csp/dcp

QatarEnergy

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending