Solar Energy
A new method boosts efficiency of organic solar cells
A new method boosts efficiency of organic solar cells
by Simon Mansfield
Sydney, Australia (SPX) Dec 06, 2024
The integration of polymeric insulators in organic solar cells has driven major advancements in the field, addressing challenges related to molecular conformation, film crystallinity, and defect state reduction. Traditionally, these improvements were attributed to enhanced film morphology resulting from insulating materials. However, a novel discovery by Professor Hang Yin’s team at Shandong University has unveiled a previously unknown mechanism driving performance gains in organic semiconductors.
The research introduces the concept of the “insulator-donor electron wavefunction coupling effect,” which provides a new approach for enhancing electron mobility in donor systems. The team demonstrated that blending D-A-type donor polymers with insulating materials featuring electron-rich side chains can amplify electron mobility by as much as 100 times. This phenomenon is distinct from earlier mechanisms based on morphological optimization.
Theoretical calculations revealed that the electron-rich groups in the insulating material directly couple with the donor polymer’s D unit, lowering the energy barrier for electron transport. This coupling significantly enhances intrachain electron movement, a conclusion supported by experimental data.
Leveraging this coupling effect, the researchers fabricated PM6/L8-BO pseudo-bilayer organic solar cells, achieving a record-setting power conversion efficiency (PCE) of 19.50% (certified at 19.18%). The findings offer a fresh perspective on quantum effects in polymeric insulators while proposing a straightforward and effective method for improving organic solar cell performance.
The findings were published in National Science Review under the title “Insulator-Donor Electron Wavefunction Coupling in Pseudo-Bilayer Organic Solar Cells Achieving A Certified Efficiency of 19.18%.” The study’s co-first authors include Jiangkai Sun (PhD, Shandong University), Xue Yang (Master’s student, Shandong University), and Ruijie Ma (postdoctoral researcher, Hong Kong Polytechnic University). Professors Hang Yin, Xiaotao Hao, Kun Gao (Shandong University), and Gang Li (Hong Kong Polytechnic University) served as corresponding authors.
Research Report:Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18%
Related Links
State Key Laboratory of Crystal Materials
All About Solar Energy at SolarDaily.com
Solar Energy
Scientists Probe Declining Earbud Battery Longevity
Scientists Probe Declining Earbud Battery Longevity
by Clarence Oxford
Los Angeles CA (SPX) Feb 05, 2025
Have you ever noticed how electronic devices, including wireless earbuds, seem to lose battery capacity faster the longer you use them? An international research team from The University of Texas at Austin set out to examine this familiar issue, known as battery degradation, by focusing on the earbuds that many people rely on daily. Through a series of x-ray, infrared, and other imaging approaches, the researchers investigated the hidden complexities behind these tiny devices and revealed why their battery life declines over time.
“This started with my personal headphones; I only wear the right one, and I found that after two years, the left earbud had a much longer battery life,” said Yijin Liu, an associate professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering, who led the new research published in Advanced Materials. “So, we decided to look into it and see what we could find.”
Their analysis showed that crucial earbud features – like the Bluetooth antenna, microphones, and circuits – compete with the battery in a very confined space, producing a microenvironment that is less than ideal. This situation results in a temperature gradient that damages the battery over time, with different sections of the cell experiencing variable temperatures.
Real-world factors also complicate matters. Frequent changes in climate, shifts in air quality, and a host of other environmental variables challenge the battery’s resilience. While cells are generally designed to endure harsh conditions, constant fluctuations can take their toll.
These discoveries highlight the importance of considering how batteries interact with devices such as phones, laptops, and even electric vehicles. Packaging solutions, strategic design decisions, and adaptations for user habits may all play a role in extending battery performance.
“Using devices differently changes how the battery behaves and performs,” said Guannan Qian, the first author of this paper and a postdoctoral researcher in Liu’s lab. “They could be exposed to different temperatures; one person has different charging habits than another; and every electric vehicle owner has their own driving style. This all matters.”
In conducting this study, Liu and his team worked closely with UT’s Fire Research Group, led by mechanical engineer Ofodike Ezekoye. They paired infrared imaging methods with their in-house x-ray technology at UT Austin and Sigray Inc. To expand their scope, they then teamed up with some of the world’s most advanced x-ray facilities.
Their collaborators included researchers from SLAC National Accelerator Laboratory’s Stanford Synchrotron Radiation Lightsource, Brookhaven National Laboratory’s National Synchrotron Light Source II, Argonne National Laboratory’s Advanced Photon Source, and the European Synchrotron Radiation Facility (ESRF) in France. These partnerships allowed them to observe battery behavior under more authentic operating conditions.
“Most of the time, in the lab, we’re looking at either pristine and stable conditions or extremes,” said Xiaojing Huang, a physicist at Brookhaven National Laboratory. “As we discover and develop new types of batteries, we must understand the differences between lab conditions and the unpredictability of the real world and react accordingly. X-ray imaging can offer valuable insights for this.”
Looking ahead, Liu says his team will continue analyzing battery performance in the settings people experience every day. They plan to expand their approach to larger batteries, such as those in smartphones, laptops, and electric vehicles, to learn more about their degradation patterns.
Research Report:In-device Battery Failure Analysis
Related Links
University of Texas at Austin
Powering The World in the 21st Century at Energy-Daily.com
Solar Energy
HZB sets new efficiency record for CIGS perovskite tandem solar cells
HZB sets new efficiency record for CIGS perovskite tandem solar cells
by Robert Schreiber
Berlin, Germany (SPX) Feb 05, 2025
Researchers at Helmholtz Center Berlin for Materials and Energy (HZB) and Humboldt University Berlin have developed a CIGS-perovskite tandem solar cell that has set a new world record for efficiency, achieving 24.6%. The performance of the cell has been officially certified by the Fraunhofer Institute for Solar Energy Systems.
Thin-film solar cells, such as those based on copper, indium, gallium, and selenium (CIGS), require minimal material and energy to manufacture, making them an environmentally friendly alternative to conventional silicon-based solar cells. CIGS thin films can also be applied to flexible substrates, expanding their potential applications.
The new tandem solar cell developed by HZB and Humboldt University combines a CIGS bottom cell with a perovskite top cell. By optimizing the contact layers between these two components, the research team successfully increased efficiency to a record-breaking 24.6%. This milestone was confirmed by the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany.
This achievement was made possible through a collaborative effort among researchers. The top cell was developed by Thede Mehlhop, a master’s student at TU Berlin, under the supervision of Stefan Gall. The perovskite absorber layer was created in the joint laboratory of HZB and Humboldt University Berlin, while the CIGS sub-cell and contact layers were fabricated by HZB researcher Guillermo Farias Basulto. Additionally, the KOALA high-performance cluster system at HZB was used to deposit the perovskite and contact layers in a vacuum.
“At HZB, we have highly specialized laboratories and experts who are top performers in their fields. With this world record tandem cell, they have once again shown how fruitfully they work together,” said Prof. Rutger Schlatmann, spokesman for the Solar Energy Department at HZB.
HZB has a strong track record in achieving world records in solar cell efficiency, including past accomplishments in silicon-perovskite tandem cells and now in CIGS-perovskite tandem technology.
“We are confident that CIGS-perovskite tandem cells can achieve much higher efficiencies, probably more than 30%,” said Prof. Rutger Schlatmann.
Related Links
Helmholtz Center Berlin for Materials and Energy
All About Solar Energy at SolarDaily.com
Solar Energy
Advancing safer lithium energy storage
Advancing safer lithium energy storage
by Erica Marchand
Paris, France (SPX) Feb 04, 2025
Charging our phones has become so routine that we rarely reflect on the breakthrough that made it possible. Rechargeable lithium-ion batteries, introduced commercially in the 1990s, propelled a technological revolution that earned their creators the 2019 Nobel Prize in Chemistry. This key innovation underpins the functionality of today’s smartphones, wireless headphones, and electric vehicles, making them both financially and environmentally practical.
As our devices grow more advanced, the demand for batteries that pack more power while remaining safe continues to rise. Yet engineering such power sources is far from simple. One promising design is the lithium metal battery, which could deliver more stored energy than standard battery types. Unfortunately, its potential is curtailed by a persistent issue: the emergence of tiny threads, or dendrites, that accumulate with each charge. When dendrites build up, they can form metallic connections that degrade battery functionality and pose a serious fire hazard. Until recently, researchers had limited approaches to probe and understand dendrite formation. In a new study led by Dr. Ayan Maity in the lab of Prof. Michal Leskes at the Weizmann Institute of Science’s Molecular Chemistry and Materials Science Department, scientists developed a novel method to identify the factors that spark dendrite growth, as well as to rapidly evaluate various battery components for improved safety and performance.
Rechargeable batteries function by allowing positively charged ions to migrate between the anode (negative electrode) and the cathode (positive electrode) through an electrolyte. Charging forces the ions back into the anode, counter to the usual flow in a typical chemical reaction, thus preparing the battery for another cycle of use. Lithium metal batteries take a different approach by employing a pure lithium metal anode, enabling higher energy storage. However, lithium metal is chemically reactive and quickly forms dendrites when it interacts with the electrolyte. Over time, enough dendrites can short-circuit the battery and raise the likelihood of combustion.
One way to avoid fire risks is to replace the volatile liquid electrolyte with a solid, nonflammable one, often comprising a polymer-ceramic composite. While altering the ratio of polymer to ceramic can influence dendrite growth, finding the ideal formulation remains a challenge for extending battery life.
To investigate, the team employed nuclear magnetic resonance (NMR) spectroscopy, a standard tool for pinpointing chemical structures, and tracked both dendrite formation and the chemical interplay within the electrolyte. “When we examined the dendrites in batteries with differing ratios of polymer and ceramic, we found a kind of ‘golden ratio’: Electrolytes that are composed of 40 percent ceramic had the longest lives,” Leskes explains. “When we went above 40 percent ceramic, we encountered structural and functional problems that impeded battery performance, while less than 40 percent led to reduced battery life.” Intriguingly, batteries with that optimal ratio displayed more dendrites overall, but those dendrites were effectively confined in a way that prevented destructive bridging.
These insights prompted a larger question: what halts the extension of the dendrites? The team hypothesized that a thin covering on the surface of dendrites, called the solid electrolyte interphase (SEI), might be crucial. This layer, formed when dendrites interact with the electrolyte, can affect how lithium ions travel through the battery, and it can also either prevent or accelerate the movement of harmful substances between electrodes. Both of these factors, in turn, can stifle or foster further dendrite development.
Probing the chemical composition of such thin SEI films is inherently difficult, since they measure only a few dozen nanometers thick. The researchers tackled this problem by enhancing the signals in their NMR data using dynamic nuclear polarization. This specialized technique leverages the strong spin of polarized lithium electrons, bolstering signals from the atomic nuclei in the SEI and exposing its chemical makeup. Through this refined lens, the researchers discovered precisely how lithium metal interacts with polymer or ceramic materials, revealing that certain SEI layers can simultaneously improve ion transport and block hazardous substances.
Their findings pave the way to design sturdier, safer, and more powerful batteries that will store greater energy for a longer duration with reduced environmental and economic costs. Such next-generation batteries could power larger devices without having to increase the physical size of the battery itself, while also extending the battery’s life cycle.
“One of the things I love most about this study is that, without a profound scientific understanding of fundamental physics, we would not have been able to understand what happens inside a battery. Our process was very typical of the work here at the Weizmann Institute. We started with a purely scientific question that had nothing to do with dendrites, and this led us to a study with practical applications that could improve everybody’s life,” Leskes says.
Research Report:Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy
Related Links
Weizmann Institute of Science
Powering The World in the 21st Century at Energy-Daily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal