Connect with us

Solar Energy

Big breakthrough for ‘massless’ energy storage

Published

on

Big breakthrough for ‘massless’ energy storage

Researchers from Chalmers University of Technology have produced a structural battery that performs ten times better than all previous versions. It contains carbon fibre that serves simultaneously as an electrode, conductor, and load-bearing material. Their latest research breakthrough paves the way for essentially ‘massless’ energy storage in vehicles and other technology.

The batteries in today’s electric cars constitute a large part of the vehicles’ weight, without fulfilling any load-bearing function. A structural battery, on the other hand, is one that works as both a power source and as part of the structure – for example, in a car body. This is termed ‘massless’ energy storage, because in essence the battery’s weight vanishes when it becomes part of the load-bearing structure. Calculations show that this type of multifunctional battery could greatly reduce the weight of an electric vehicle.
The development of structural batteries at Chalmers University of Technology has proceeded through many years of research, including previous discoveries involving certain types of carbon fibre. In addition to being stiff and strong, they also have a good ability to store electrical energy chemically. This work was named by Physics World as one of 2018’s ten biggest scientific breakthroughs.

The first attempt to make a structural battery was made as early as 2007, but it has so far proven difficult to manufacture batteries with both good electrical and mechanical properties. But now the development has taken a real step forward, with researchers from Chalmers, in collaboration with KTH Royal Institute of Technology in Stockholm, presenting a structural battery with properties that far exceed anything yet seen, in terms of electrical energy storage, stiffness and strength. Its multifunctional performance is ten times higher than previous structural battery prototypes.

The battery has an energy density of 24 Wh/kg, meaning approximately 20 percent capacity compared to comparable lithium-ion batteries currently available. But since the weight of the vehicles can be greatly reduced, less energy will be required to drive an electric car, for example, and lower energy density also results in increased safety. And with a stiffness of 25 GPa, the structural battery can really compete with many other commonly used construction materials.

“”Previous attempts to make structural batteries have resulted in cells with either good mechanical properties, or good electrical properties. But here, using carbon fibre, we have succeeded in designing a structural battery with both competitive energy storage capacity and rigidity,” explains Leif Asp, Professor at Chalmers and leader of the project.

Super light electric bikes and consumer electronics could soon be a reality

The new battery has a negative electrode made of carbon fibre, and a positive electrode made of a lithium iron phosphate-coated aluminium foil. They are separated by a fibreglass fabric, in an electrolyte matrix. Despite their success in creating a structural battery ten times better than all previous ones, the researchers did not choose the materials to try and break records – rather, they wanted to investigate and understand the effects of material architecture and separator thickness.

Now, a new project, financed by the Swedish National Space Agency, is underway, where the performance of the structural battery will be increased yet further. The aluminium foil will be replaced with carbon fibre as a load-bearing material in the positive electrode, providing both increased stiffness and energy density. The fibreglass separator will be replaced with an ultra-thin variant, which will give a much greater effect – as well as faster charging cycles. The new project is expected to be completed within two years.

Leif Asp, who is leading this project too, estimates that such a battery could reach an energy density of 75 Wh/kg and a stiffness of 75 GPa. This would make the battery about as strong as aluminium, but with a comparatively much lower weight.

“”The next generation structural battery has fantastic potential. If you look at consumer technology, it could be quite possible within a few years to manufacture smartphones, laptops or electric bicycles that weigh half as much as today and are much more compact”, says Leif Asp.

And in the longer term, it is absolutely conceivable that electric cars, electric planes and satellites will be designed with and powered by structural batteries.

“We are really only limited by our imaginations here. We have received a lot of attention from many different types of companies in connection with the publication of our scientific articles in the field. There is understandably a great amount of interest in these lightweight, multifunctional materials,” says Leif Asp.

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Innovative approach to perovskite solar cells achieves 24.5% efficiency

Published

on

By

Innovative approach to perovskite solar cells achieves 24.5% efficiency


Innovative approach to perovskite solar cells achieves 24.5% efficiency

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






In groundbreaking research published in Nano Energy, a team led by Prof. CHEN Chong at the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has significantly improved the performance of perovskite solar cells (PSCs). By integrating inorganic nano-material tin sulfoxide (SnSO) as a dopant, they have boosted the photoelectric conversion efficiency (PCE) of PSCs to an impressive 24.5%.

Traditional methods of enhancing the charge transport in the critical hole transport layer (HTL) of PSCs involve the use of lithium trifluoromethanesulfonyl imide (Li-TFSI) to facilitate the oxidation of the HTL material spiro-OMeTAD. However, this method suffers from low doping efficiency and can leave excess Li-TFSI in the spiro-OMeTAD film, reducing its compactness and long-term conductivity. Additionally, the oxidation process typically requires 10-24 hours to achieve the desired electrical conductivity and work function.



The HFIPS team’s innovation lies in their development of a rapid and replicable method to control the oxidation of nanomaterials, using SnSO nanomaterial to pre-oxidize spiro-OMeTAD in precursor solutions. This novel approach not only enhances conductivity but also optimizes the energy level position of the HTL, culminating in a high PCE of 24.5%.



One of the key advantages of the SnSO-regulated spiro-OMeTAD HTL is its pinhole-free, uniform, and smooth morphology, which maintains its performance and physical integrity even under challenging conditions of high temperature and humidity. Additionally, the oxidation process facilitated by this method is significantly faster, taking only a few hours- a crucial factor in improving the commercial production efficiency of PSCs.



Prof. CHEN Chong highlighted the importance of this breakthrough, stating, “Also, the oxidation process only takes a few hours, which is good for improving the commercial preparation efficiency of PSCs.” This advancement not only marks a significant leap in the efficiency and stability of PSCs but also holds substantial implications for their commercial viability.



Research Report:A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells


Related Links

Hefei Institutes of Physical Science

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Revolutionary technique boosts flexible solar cell efficiency to record high

Published

on

By

Revolutionary technique boosts flexible solar cell efficiency to record high


Revolutionary technique boosts flexible solar cell efficiency to record high

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






Researchers at Tsinghua University have made a significant breakthrough in the efficiency of flexible solar cells, leveraging a novel fabrication technique to set a new efficiency record. This advancement addresses the longstanding challenge of the lower energy conversion efficiency in flexible solar cells compared to their rigid counterparts, offering promising implications for aerospace and flexible electronics applications.

Flexible perovskite solar cells (FPSCs), despite their potential, have historically lagged in efficiency due to the polyethylene terephthalate (PET)-based flexible substrate’s inherent softness and inhomogeneity. This limitation, coupled with durability issues arising from the substrate’s susceptibility to water and oxygen infiltration, has hindered the practical deployment of FPSCs.



The team from the State Key Laboratory of Power System Operation and Control at Tsinghua University, alongside collaborators from the Center for Excellence in Nanoscience at the National Center for Nanoscience and Technology in Beijing, introduced a chemical bath deposition (CBD) technique. This method facilitates the deposition of tin oxide (SnO2) on flexible substrates without the need for strong acids, which are detrimental to such substrates. Tin oxide is essential for the FPSCs as it acts as an electron transport layer, crucial for the cells’ power conversion efficiency.



Associate Professor Chenyi Yi, a senior author of the study, explained, “Our method utilizes SnSO4 tin sulfate instead of SnCl2 tin chloride, making it suitable for acid-sensitive flexible substrates. This approach not only enhances the efficiency of FPSCs but also their durability, with a new power conversion efficiency benchmark set at 25.09%, certified at 24.90%.”



The novel fabrication technique also contributes to the FPSCs’ stability, as demonstrated by the cells maintaining 90% of their initial efficiency after being bent 10,000 times. The researchers noted an improved high-temperature stability in SnSO4-based FPSCs over those made with SnCl2, pointing towards the dual benefits of efficiency and durability enhancements.



The research signifies a leap towards industrial-scale production of high-efficiency FPSCs, with potential applications ranging from wearable technology and portable electronics to aerospace power sources and large-scale renewable energy solutions. The team’s findings, supported by Ningyu Ren, Liguo Tan, Minghao Li, Junjie Zhou, Yiran Ye, Boxin Jiao, and Liming Ding, mark a pivotal step in transitioning FPSCs from laboratory to commercial use.



Research Report:25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2


Related Links

Tsinghua University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

KAUST advances in perovskite-silicon tandem cells

Published

on

By

KAUST advances in perovskite-silicon tandem cells


KAUST advances in perovskite-silicon tandem cells

by Sophie Jenkins

London, UK (SPX) Mar 28, 2024






In 2009, researchers introduced perovskite-based solar cells, highlighting the potential of methylammonium lead bromide and methylammonium lead iodide-known as lead halide perovskites-for photovoltaic research. These materials, notable for their excellent light-absorbing properties, marked the beginning of an innovative direction in solar energy generation. Since then, the efficiency of perovskite solar cells has significantly increased, indicating a future where they are used alongside traditional silicon in solar panels.

Erkan Aydin, Stefaan De Wolf, and their team at King Abdullah University of Science and Technology (KAUST) have explored how this tandem technology could transition from experimental stages to commercial production. Perovskites are lauded for their low-temperature production process and their flexibility in application, offering a lighter, more adaptable, and potentially cost-effective alternative to silicon-based panels.



Combining perovskite with silicon in a single solar cell leverages the strengths of both materials, enhancing sunlight utilization and reducing losses that aren’t converted into electrical energy. “The synergy between perovskite and silicon technologies in tandem cells captures a broader spectrum of sunlight, minimizing energy loss and significantly boosting efficiency,” Aydin notes.



However, Aydin and his colleagues acknowledge challenges in scaling tandem solar-cell fabrication for the marketplace. For instance, the process of depositing perovskite on silicon surfaces is complicated by the silicon’s texture. Traditional laboratory methods like spin coating are not feasible for large-scale production due to their inefficiency and material wastage. Alternatives such as slot-die coating and physical vapor deposition present their own set of advantages and challenges.



Moreover, the durability of perovskite components under environmental stressors such as moisture, heat, and light remains a critical concern. Aydin emphasizes the need for focused research to enhance the reliability and lifespan of perovskite/silicon tandem cells, especially in harsh conditions.



Although tandem modules have already been demonstrated in proof-of-concept stages, the timeline for their market readiness is uncertain. Nonetheless, the successful development of efficient, commercial-grade perovskite/silicon solar cells is essential for meeting global energy demands sustainably.



Research Report:Pathways toward commercial perovskite/silicon tandem photovoltaics


Related Links

King Abdullah University of Science and Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.