TOP SCEINCE
Elusive particle may point to undiscovered physics
![Elusive particle may point to undiscovered physics Elusive particle may point to undiscovered physics](https://www.sciencedaily.com/images/scidaily-icon.png)
The muon is a tiny particle, but it has the giant potential to upend our understanding of the subatomic world and reveal an undiscovered type of fundamental physics.
The collaboration, which brought together 200 scientists from 35 institutions in seven countries, set out to confirm the findings of a 1998 experiment that startled physicists by indicating that muons’ magnetic field deviates significantly from the Standard Model, which is used to explain the laws that govern fundamental particles.
Digitizer modules undergo testing in the lab of Lawrence Gibbons, professor of physics, before being shipped to the Fermi National Accelerator Laboratory. Twenty-eight crates of these modules were installed around the muon g-2 ring.
“The question was, what’s going on? Was the experiment wrong? Or is the theory incomplete?” Gibbons said. “And if the theory is incomplete, then confirming what’s going on becomes the first terrestrial evidence of a totally new kind of fundamental particle or force that we don’t know about. It would be the first experiment on Earth that is sort of the equivalent of the discovery of dark matter in space.”
On April 7, the team confirmed that the original findings were correct, which means there must be more to the physics surrounding the muon than previously known.
Muons are like electrons but are more than 200 times more massive. Both are essentially tiny magnets with their own magnetic field. Muons are far more unstable, though, and decay in a few millionths of a second. They are also notoriously difficult to observe at the quantum mechanical level because the vacuum in which they exist is not a big empty cavity, but rather a bubbling, frothing, dynamic environment.
“It’s your cappuccino foam version of the vacuum, where there’s virtual particles winking in and out of existence all the time,” Gibbons said. “And that turns out to affect the strength of the magnetic field of a muon.”
To figure out why, researchers at Brookhaven National Laboratory 20 years ago set out to measure the absolute strength of muon’s magnetic field. They did this by firing a beam of muons into a 14-meter-diameter magnetic ring at nearly the speed of light while a series of detectors captured data. The scientists discovered a major discrepancy in the muon’s magnetic field: It was more than 3.5 standard deviations from the Standard Model predicted by theoretical physicists.
A plan was eventually hatched to repeat the Brookhaven experiment with higher precision. In 2013, the Brookhaven magnetic ring was transported to the Fermilab facility in Batavia, Illinois, where it was coupled with an even stronger particle accelerator that could produce more than 20 times the amount of muons. In 2018, the first of several experiment runs was launched.
This muon g-2 experiment — “g” refers to the value of the magnet’s strength caused by its intrinsic spin, which is slightly larger than two — was successful thanks to a system of detectors developed through a joint partnership between Cornell and the University of Washington.
The University of Washington group built a set of 24 calorimeters out of lead fluoride crystals and silicon photomultipliers that measure a blue light, known as Cherenkov radiation, that results when the positrons from muon decay strike the crystals. By measuring the time and amount of light for each of about 8 billion positrons, the researchers can pinpoint the muon’s precession rate, which is the frequency of its rotational wobble. The rate is directly related to the value of g-2.
The Cornell team built the digitizers that could look at the electronic signal coming out of the detectors and create a digitized version of the waveform that could be analyzed offline. The researchers were supported in the effort by the Laboratory for Elementary-Particle Physics (LEPP), and their digitizers incorporated $200,000 worth of specialized analog-to-digital converter chips donated by Texas Instruments.
Gibbons’ group also built one of the pair of reconstruction packages that helped their collaborators parse and analyze the collected data, and they were assisted in getting the most precise measurements by David Rubin, the Boyce D. McDaniel Emeritus Professor of Physics (A&S), who helped correct for the spread of muon momenta in the stored beam and for the small vertical motion as the beam speeds around the magnetic ring. Two other Cornell faculty, Toichiro “Tom” Kinoshita, professor emeritus of physics, and G. Peter Lepage, the Goldwin Smith Professor of Physics, both in A&S, contributed to the Standard Model prediction of g-2, to which the project compared its results.
As a fitting final touch, Gibbons chose to make the digitizer faceplate Cornell red.
With so much subatomic information to be sifted through, six different groups worked to separately confirm the muon’s precession frequency. Gibbons helped design blinding software that would ensure the groups made their calculations independently.
Then the time came to compare results.
“I have to say, it was nerve-racking. You go into the room, and there’s all these points scattered all over the place from all the offsets, and you have to decide, OK, are we going to compare results now? And will they agree?” Gibbons said. “We were trying to measure something to 500 parts per billion. The range that we had was plus or minus 25 parts per million on the frequencies that we’re trying to measure. There was a huge sigh of relief when we found everything agreed beautifully.”
And when all the international collaborators came together online for the final unblinding of the magnetic field measurement and checked it against the original Brookhaven result?
“Oh man. It was like hats flying in the air,” Gibbons said. “It was a combination of elation and relief.”
The results from this first experimental run represent only 6% of the data the researchers hope to eventually collect. Additional analysis has already begun on a second and third run, which will generate three to four times as much data. It will be 10 years before all the analysis is complete.
“We landed right on top of this result that really could indicate that there’s something totally new going on. We really want to push the uncertainty, the precision, to make the strongest possible statement that we can experimentally,” said Gibbons, who began work on the project in 2011. “We may be onto something really profound, something we don’t understand. And we still have to figure out what it is.”
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles
![Elusive particle may point to undiscovered physics Elusive particle may point to undiscovered physics](https://www.sciencedaily.com/images/scidaily-icon.png)
A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions
![Elusive particle may point to undiscovered physics Elusive particle may point to undiscovered physics](https://www.sciencedaily.com/images/scidaily-icon.png)
A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going
![Elusive particle may point to undiscovered physics Elusive particle may point to undiscovered physics](https://www.sciencedaily.com/images/scidaily-icon.png)
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal