Solar Energy
Encouraging solar energy adoption in rural India

More than 73 million households in remote areas of the world get electricity not from a conventional power grid but rather from sources such as solar lanterns, solar home systems (SHSs) that can power several devices, and local solar-based microgrids. Such off-grid devices and systems provide life-changing services to people who are off centralized electricity grids, and they help spread the use of renewable energy. As a result, international aid organizations and nongovernmental organizations (NGOs) are working hard to encourage their adoption.
To expedite the spread of solar technologies, such organizations need to understand the barriers and incentives for households to adopt them. Scholars have assumed that as household income increases, people will adopt newer, “higher-order” technologies and abandon older, “lower-order ones,” such as those that burn fossil fuels. But there’s clear evidence that in remote places people don’t easily abandon the energy sources they have – including their kerosene lanterns.
What motivates people in remote communities to decide to buy and use a particular energy source? What encourages them to choose a certain solar lantern? And why do they then hang onto some of their older devices after acquiring new sources such as a microgrid or even access to the state-run electric grid?
Three years ago, David Hsu, an associate professor of urban and environmental planning, and then-graduate student Elise Harrington PhD ’20, both of the Department of Urban Studies and Planning, decided to investigate those questions in remote villages in India. From preliminary work in the region, they knew that many households use a range of energy sources. If they were to figure out what had prompted a household to adopt and use particular technologies, they’d need to interview the whole decision-making group – a prospect they knew would be difficult.
In the past, when Hsu and his colleagues knocked on doors to ask about interest in microgrid power, a crowd of villagers would quickly gather, the person with the highest status would respond, and everybody else would nod. For this study, he and Harrington needed to go into the home, determine what energy systems and appliances were present, and then get the family members to remember – together – how they had decided to purchase them and perhaps abandon previous systems.
The first challenge would be to get in the door. “”There are many different social norms that govern access to private spaces,” says Harrington. “But as a woman, I was allowed into interior living spaces. So I got to see firsthand the appliances and lights and so on that were installed or in use.” In addition, she had learned to speak some basic Hindi so she could introduce herself, refer to appliances, and ask basic questions.
The second challenge was to get the group to remember decisions made in the past and what had motivated them – a process that could be both tedious and confusing. For help, the researchers engaged Ameya Athavankar of twobythree, a company based in Mumbai, India, that specializes in creating techniques using elements of game-playing for applications ranging from building and product design to marketing research. Athavankar quickly became an integral member of the research team, working to explore and test possible game formats and field protocols, helping to communicate in both Hindi and the local dialect, and leading the interviews.
Game-playing reveals choices
The United Nations recognizes six steps, or “tiers,” in the transition from having no electricity to being able to run high-power appliances. In their work, Hsu and Harrington decided to focus on the transition from no access to focused task lighting plus phone charging (tier 1), and then the move to general lighting, phone charging, and appliance use (tier 2). “Going from just kerosene to having electricity that provides you with basic lighting and charging can be a really transformative step for households,” says Harrington.
In consultation with a local microgrid company and an NGO with a local office, the researchers selected three villages in the Gumla District of Jharkhand, India, for their study. Two of the villages – Bartoli and Neech Kobja – had access to the state-run electricity grid. The third village – Ramda Bhinjpur – had access to a private microgrid but not to the state grid. Within those three villages, the team selected a total of 22 households that represented a range of experience with solar technologies and fuels used for basic household lighting and charging.
The photo below shows the result of using the researchers’ game-based protocol in one interview. In the game, colored playing cards represent five energy sources for lighting: a kerosene lantern, a solar lantern, an SHS, a microgrid, and the state grid. The layout of cards here shows the respondents’ choices at a series of decision points, moving in time from left to right. Each column shows the result of one decision, with cards in the top row representing “primary sources,” cards in the second row “backup sources,” and cards in the third row sources that have been eliminated for lighting use.
In this interview, respondents started with a kerosene lantern (green card) – the initial lighting source in most households. Next they added a black card representing the state-run grid in the top position and moved the kerosene lantern down a row, indicating that they retained it in their household “stack” of energy sources but used it less. They then added a solar lantern (red), using it in tandem with the state grid such that both were primary sources. The solar lantern then broke – as indicated by the red card with the crossed-out image. Finally, they added a solar home system (orange) that they used along with the state grid, while retaining their kerosene lantern.
Purchase and use patterns
Following the same protocol, the researchers performed interviews at 22 households across the three villages. They then added up the sources cited as primary and as backup at each decision point across two groups: at microgrid households and at households connected to the state grid.
The two groups show some marked differences in behavior, beginning with their move away from their kerosene lanterns. The microgrid households moved kerosene lanterns to backup as soon as they had other options available, whereas the state grid group continued to use their kerosene lanterns, only gradually shifting them to a backup position.
Households in both groups adopted solar lanterns, and many continued to use them as a primary source even after being hooked up to a microgrid or the state grid. One reason cited was that solar lanterns can provide lighting for outdoor activities after dark. Perhaps more important, a government program was providing discounted solar lanterns through schools in all three villages.
SHSs were also adopted by both groups. Indeed, many in the microgrid group went directly to an SHS, essentially leapfrogging over the solar lantern option. Once the two groups got grid access, their treatment of their SHSs differed: The microgrid households soon moved much of their SHS use into a backup position, while the state grid households continued to use their SHS as a primary source.
The researchers stress that these interviews offer insight into household use patterns for solar power: Although the sample may be small, it provides rich qualitative data for understanding household decisions. And they did observe some interesting trends. For example, when households connected to a microgrid, they often shifted their existing sources to a backup position, using them on occasion to help defray the cost of the microgrid.
In contrast, households that got access to the state-run grid frequently added both a solar lantern and an SHS, and continued to use them – even increasing their use over time. Moreover, they kept using their kerosene lanterns, only gradually moving them into a backup position. The state grid is notoriously unreliable, so people need to maintain good alternatives for use during blackouts.
Explaining the choices
To delve deeper into what influences technology choice, the researchers asked at each decision point why changes had been made. Using a second set of cards, they asked respondents about the possible importance of five factors: awareness, availability and access, capacity, unit pricing, and quality.
The adoption of every energy technology – but especially the SHS and microgrid – was intended to increase system capacity to meet more end uses, including additional appliances. People cited pricing and payment options as influencing their decisions to acquire solar lanterns and SHSs. Decisions to connect to the state grid were totally dependent on access, whereas decisions to connect to a solar microgrid were more heavily influenced by awareness of the technology.
Notably, failures in the quality of higher-order sources often influenced the retention of lower-order sources. Fully 90 percent of respondents mentioned capacity as influencing their decision to retain their SHS, citing its ability to provide brighter light and greater coverage than other sources. Solar lanterns were retained for their portability and ability to provide better-quality light for studying and other indoor activities. Most households retained kerosene and solar lanterns as well as SHSs to provide coverage during state grid or microgrid outages.
The researchers cite several responses as unexpected. For example, when purchasing an SHS, respondents were initially interested in financing – until they learned about the interest rate and the monthly payments. In general, respondents said that they preferred to make cash payments all at once because their household income varies with the season. Interestingly, other areas of the world with growing off-grid solar markets often have strong programs of pay-as-you-go financing for solar products.
Even more surprising to Harrington was finding that the people interviewed typically paid little attention to warranties or quality labels when making purchases. “There are important efforts in India, and internationally, that focus on setting technical quality standards and providing labeling and certification to communicate those quality standards to consumers,” she says. “But we found that what matters to people is their personal relationship with a shop owner or with the person or organization that introduces them to a solar product.”
Powering appliances
Finally, the researchers looked at what appliances and activities people supported with an SHS, microgrid, and grid. They grouped households into three categories by income and compared end uses across those three electricity sources.
For the high- and middle-income groups, an SHS permitted the use of high-watt devices such as fans, televisions, and laptop computers along with mobile phones and lights. Connection to either the state grid or a microgrid enabled those income groups to undertake income-generating enterprises such as operating a convenience store or running an electronics repair shop. That finding is notable because many aid organizations and microgrid operators emphasize the importance of enabling productive activities when providing electricity to underserved populations.
For the lowest income group, an SHS made possible the first move in electricity access – getting mobile phones and lights. But once on the state-run grid, even some of the most financially constrained households could run televisions and fans as well. “For all the discussion about the challenges with grid reliability and quality, you also see this amazing opportunity that the grid provides to those in our study with the lowest income,” says Harrington.
Policy implications and plans
The researchers’ findings demonstrate the value of introducing SHSs and solar lanterns to provide basic lighting and charging capability before the grid is available. In some cases, supporting adoption of those technologies is the most cost-effective approach to spreading electrification, at least in the short term.
The study also shows that people tend to buy solar devices and services in response to interactions with those whom they trust. In one case, a village decided to participate in a microgrid after an NGO well-known to the community organized a trip to see a microgrid in another village. More such efforts at consumer education and engagement may be needed to support off-grid solar.
Finally, the research confirms the value of the card-based interview technique for data collection and subsequent analysis. Taking a photograph of the laid-out cards at the end of each interview proved important to remembering and then analyzing the timeline and key factors influencing the decisions made at each step. “If we had just done interviews and transcriptions, I don’t think we ever would have made sense of what people’s decision process was,” says Hsu. “People don’t always remember the sequence or rationale for their energy adoption choices until you give them a way to record their experience.”
The researchers also see another potential application of the technique. Setting up a microgrid to provide different levels of service to households in a village requires a high degree of collective decision-making. Perhaps a version of their card-playing interview technique could support that decision-making, ensuring that every household is heard and gets what it needs from the proposed microgrid.
Leave a Reply
Solar Energy
Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells

Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells
by Simon Mansfield
Sydney, Australia (SPX) Feb 21, 2025
Bifacial perovskite solar cells, known for their ability to capture sunlight from both the front and rear surfaces, have taken a significant step forward thanks to researchers at the Indian Institute of Technology (IIT) Dharwad. Their development of a novel NiO/Ag/NiO (NAN) hybrid transparent electrode has led to enhancements in efficiency, durability, and infrared transparency, opening new possibilities for solar energy applications.
A recent study published in the Journal of Photonics for Energy (JPE) details how the IIT Dharwad team designed and fabricated highly transparent bifacial solar cells utilizing a three-layer NAN electrode. This innovative structure, created using a low-energy physical vapor deposition method, resulted in an electrode with extremely low electrical resistance and high transmittance of visible light.
When incorporated into the bifacial solar cells, the NAN transparent electrode delivered impressive power conversion efficiencies (PCE), achieving 9.05% and 6.54% when exposed to light from different directions. The cells also exhibited a high bifaciality factor of 72%, demonstrating their effectiveness in utilizing light from both sides.
Beyond efficiency, these solar cells displayed exceptional durability, retaining 80% of their initial performance for over 1,000 hours without the need for protective encapsulation. Additionally, their ability to transmit substantial near-infrared light makes them suitable for applications such as thermal windows and advanced optoelectronic technologies.
With a thickness of less than 40 nm, the NAN electrode is particularly advantageous for integration into building materials and tandem solar cell systems. Senior researcher Dhriti Sundar Ghosh, an associate professor of physics at IIT Dharwad, emphasized the broad implications of their work, stating, “This study offers a blueprint for designing transparent electrodes in bifacial perovskite solar cells, paving the way for advancements in tandem devices, agrivoltaics, and automotive solar technologies.”
The findings reinforce the growing potential of bifacial perovskite solar cells in renewable energy solutions, contributing to the development of more efficient and adaptable solar power technologies.
Research Report:Hybrid top transparent electrode for infrared-transparent bifacial perovskite solar cells
Related Links
Indian Institute of Technology
All About Solar Energy at SolarDaily.com
Solar Energy
Bio-inspired approach creates bespoke photovoltaics

Bio-inspired approach creates bespoke photovoltaics
by David Nutt for Cornell Chronicle
Ithica NY (SPX) Feb 21, 2025
There is more to photovoltaic panels than the materials that comprise them: The design itself can also drive – or potentially diminish – the widespread adoption of solar technology.
Put bluntly: Most solar panels are not much to look at. And their flat, nonflexible composition means they can only be affixed to similarly flat structures. But what if photovoltaic panels were instead a hinged, lightweight fabric that was aesthetically attractive and could wrap around complex shapes, even contorting its form to better absorb sunlight?
Thus was born the idea for HelioSkin, an interdisciplinary project led by Jenny Sabin, the Arthur L. and Isabel B. Weisenberger Professor in Architecture in the College of Architecture, Art and Planning at Cornell University, in collaboration with Itai Cohen, professor of physics in the College of Arts and Sciences, and Adrienne Roeder, professor in the Section of Plant Biology in the School of Integrative Plant Science, in the College of Agriculture and Life Sciences and at the Weill Institute for Cell and Molecular Biology.
“What we’re really passionate about is how the system could not only produce energy in a passive way, but create transformational environments in urban or urban-rural settings,” Sabin said. “Sustainability is about performance and function, but equally, it’s about beauty and getting people to get excited about it, so they want to participate. The grand goal is to inspire widespread adoption of solar for societal impact.”
Sabin, the inaugural chair of the new multicollege Department of Design Tech, has made a career of collaborating with diverse disciplines and taking cues not just from architecture, but also engineering. And physics. And mathematics. And, perhaps most importantly, biology. All of her projects are united by the same question: How might buildings and their integrated material systems behave more like organisms, responding and adapting to their local environments?
“Nature is not efficient,” Sabin said. “It’s resilient, and biology is in it for the long game, over much longer time scales. Additionally, it has been demonstrated that plants that track the sun exhibit a photosynthetic advantage. And we think that’s a pretty powerful way to think about sustainability and resiliency in architecture.”
Sabin’s design interests address a very real need. The primary convergent problem is that 40% of total greenhouse gas emissions in the United States comes from buildings, according to the International Energy Agency.
“By developing a new solar skin product that can scale, we aim to turn the needle by getting homeowners and businesses to adopt solar to reduce the 28% of CO2 that comes from the heating, lighting and cooling of buildings,” Sabin said.
HelioSkin originated in a partnership between Sabin and Mariana Bertoni, an energy engineer at Arizona State University, who is also a member of the HelioSkin team. Together they combined computational design, digital fabrication and 3D printing to create customized filters and photovoltaic panel assemblies – what Sabin calls “nonstandard angularity” – that could simultaneously boost light absorption and architectural beauty. The key to that effort was looking at the mechanics of heliotropism – how sunflowers track sunlight.
For HelioSkin, that research foundation expanded to include Roeder’s expertise in heliotropism and cellular morphogenesis – i.e., how plant cells grow to bend the plant toward the sun – and Cohen’s specialization in using geometric methods such as origami and kirigami to improve the mechanical performance of metamaterials, increasing their flexibility while expending very little energy.
The flowering Arabidopsis plant is an ideal model for HelioSkin because, as “the fruit fly of the plant world” according to Roeder, it’s easy to study at the cellular level. Those cells play a vital role in changing the curvature of the plant’s stem as it angles toward the sunlight, with the Arabidopsis’ hormones causing the cells on its sunless side to expand by 25%, bending the stem 90 degrees.
“We’ve already figured out how to translate our plant cells’ tracking mechanism into Jenny’s architectural software,” Roeder said. “Now we have to start figuring out how to make that transition in HelioSkin.”
‘The human-centered design process’
The ultimate goal is to generate a mechanically tracking solar-collection skin for retractable roofs, stadiums and skyscrapers, but to get there, the team is launching a three-year pilot project whereby they create small solar canopies for backyards, which can then be scaled up for urban parks.
Bringing that vision to market not only involves scientific innovation and smart design, but requires industry partnerships, capital and a marketing plan.
The project was launched through the National Science Foundation’s Convergence Accelerator program, which last year awarded the team $650,000 in phase I funding. The team has applied for the next phase of funding – $5 million over three years.
The industry partners include E Ink and Rainier Industries, which are helping integrate photovoltaics and ePaper onto lightweight, stretchable architectural fabric. SunFlex, a company that uses laser-welded back contact module technology for photovoltaics manufacturing, is onboard to help refine the HelioSkin prototypes in phase 2 – the sensing, the wiring, the arrangement of the panels, plus the geometry and substrate.
By the pilot project’s second year, the team plans to have a full-scale backyard canopy prototype that can potentially provide light and power outdoor appliances; by the third year, they aim to be in the early stages of commercialization.
As part of their commercialization plan, the team conducted extensive marketing analysis and interviews that showed HelioSkin’s gross cost, the cost-per-watt and system capacity were competitive with existing PV products.
“This was a really encouraging and exciting process to go through, to see how we compare to existing products and the potential that we have to then scale,” Sabin said. “The human-centered design process, including engaging people in many different industries, from end users to potential stakeholders to people that work for the energy grid and the state or the region – that’s been a big part of our process, and it’s been really helpful.”
The analysis revealed niche applications that the team hadn’t initially considered, such as “big box” commercial businesses that want to pursue solar to attain net-zero emissions but are also interested in display advertising or colorful pattern change for aesthetic applications. To that end, the team is working with E Ink to create a HelioSkin with electrically powered responsive display features, so solar skins can be placed on retail structures and stadiums and function as ever-changing billboards.
“This was something that came out of interviews,” Sabin said. “We had never thought about these types of applications.”
One of the virtues of working with E Ink is the company uses roll-to-roll printing to mass produce photovoltaic sheets – the same method that makes the low-cost manufacturing of perovskite photovoltaics feasible.
“The basic idea is to try to print things in 2D, which is cheap, and then morph it into 3D, allowing it to curve around structures,” Cohen said. “You can’t just take a normal sheet of paper and wrap something. It’s going to have all sorts of creases to it. Like if you try to wrap an orange, you get all these crinkles. One of the innovations that we came up with was to cut the paper into a pattern of panels and hinges that allows it to locally stretch around these round objects. A second strategy we came up with is to use fabric as a way to make the hinge. Fabric is floppy enough to give you that hinge-like behavior.”
In her experimental architecture practice, Sabin has spent more than 15 years developing large urban-scale canopies and architectural installations, experience that has served her well in launching a product.
“There’s a strong focus on commercialization and developing IP management plans. As a designer, I have a practice, and so I find this really interesting,” Sabin said. “But it’s also completely new for most of my collaborators. They don’t necessarily think about this level of application and spinning out a product. So the learning curve around that is pretty steep for all of us.”
The ability to collaborate across disciplines is what initially drew Sabin to Cornell in 2011. It’s a place where “everybody has their door open,” she said. The excitement, and the opportunities for impact, are palpable.
“Bottom line, we are in New York’s mecca for solar,” she said. “So there’s a lot going on, both in terms of innovative research, but also applied systems, in farming and agrivoltaics, solar farms, etc. So that dynamic community of people actively working on a common set of goals and questions and problems is super exciting for us, too.”
Related Links
Department of Design Tech at Cornell
All About Solar Energy at SolarDaily.com
Solar Energy
China aims to add 200 GW in renewables

China aims to add 200 GW in renewables
by Simon Mansfield
Sydney, Australia (SPX) Mar 04, 2025
China is poised to make another substantial push in renewable energy expansion this year, targeting the addition of more than 200 gigawatts of renewable capacity. According to the National Energy Administration (NEA), this will contribute to an overall power generation capacity of approximately 10.6 trillion kilowatt-hours in 2025.
The nation’s total installed power capacity is expected to exceed 3.6 billion kilowatts by the end of the year, as outlined in the NEA’s newly released energy work guidelines. China is also advancing efforts to establish a unified national power market, with non-fossil fuel power generation projected to make up around 60 percent of total installed capacity. Additionally, non-fossil energy is anticipated to constitute about 20 percent of total energy consumption.
Industry analysts indicate that while new market-based pricing mechanisms for renewable energy grid connections introduce some uncertainty, the 200 GW target, though moderate, still provides ample opportunities for stakeholders in the renewable energy sector.
“The 200 GW installation goal for this year accounts for just 56 percent of the total wind and solar capacity added in 2024, but it underscores China’s continued commitment to renewable energy,” noted Zhu Yicong, vice-president of renewables and power research at Rystad Energy.
Zhu also acknowledged concerns raised following the NEA’s latest directive requiring renewable energy producers to fully integrate into power markets and adhere to market-based electricity pricing from June. “Although a vast number of renewable projects are either under development or nearing construction across various provinces, uncertainties regarding future financial returns could lead to delays in project implementation,” she said.
To enhance the market value of renewable energy and align prices with supply-demand dynamics, the National Development and Reform Commission and the NEA recently issued a notice emphasizing competitive market mechanisms for electricity pricing.
Industry projections suggest that renewable electricity prices could decline under the new pricing system, given the low variable costs associated with sources such as solar power, particularly during peak daylight hours. This price decline could introduce hesitation among investors assessing new projects.
Despite a relatively modest target for new installations this year, the industry sees this as a strategic approach, allowing developers time to adapt to evolving market conditions. “The moderate goal enables market participants to refine sustainable strategies without facing excessive pressure for rapid installation,” Zhu added.
Experts recommend that renewable energy developers navigate the transition to market-driven pricing by securing power purchase agreements, integrating battery storage solutions, and optimizing energy output for competitiveness.
China continues to prioritize renewable energy as a fundamental component of its green economy and dual-carbon objectives. In 2024, newly installed renewable capacity accounted for 86 percent of the nation’s total new power installations. The cumulative share of renewables in the country’s total installed capacity reached a record 56 percent, according to NEA data.
While renewable energy development surges, China’s overall energy production is set to maintain steady growth. Coal production will remain stable with some planned expansion, while crude oil output is expected to stay above 200 million metric tons. The country also plans to bolster its oil and gas reserves to enhance energy security.
Related Links
National Energy Administration
All About Solar Energy at SolarDaily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
TOP SCEINCE7 months ago
Searching old stem cells that stay young forever
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
world news5 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
world news5 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
Pingback: Samsung Adds Smart Classes to 80 More Jawahar Navodaya Vidyalaya Schools | godsownmedia