Solar Energy
Engineers apply physics-informed machine learning to solar cell production

Today, solar energy provides 2% of U.S. power. However, by 2050, renewables are predicted to be the most used energy source (surpassing petroleum and other liquids, natural gas, and coal) and solar will overtake wind as the leading source of renewable power. To reach that point, and to make solar power more affordable, solar technologies still require a number of breakthroughs. One is the ability to more efficiently transform photons of light from the Sun into useable energy.
Organic photovoltaics max out at 15% to 20% efficiency – substantial, but a limit on solar energy’s potential. Lehigh University engineer Ganesh Balasubramanian, like many others, wondered if there were ways to improve the design of solar cells to make them more efficient?
Balasubramanian, an associate professor of Mechanical Engineering and Mechanics, studies the basic physics of the materials at the heart of solar energy conversion – the organic polymers passing electrons from molecule to molecule so they can be stored and harnessed – as well as the manufacturing processes that produce commercial solar cells.
Using the Frontera supercomputer at the Texas Advanced Computing Center (TACC) – one of the most powerful on the planet – Balasubramanian and his graduate student Joydeep Munshi have been running molecular models of organic solar cell production processes, and designing a framework to determine the optimal engineering choices. They described the computational effort and associated findings in the May issue of IEEE Computing in Science and Engineering.
“When engineers make solar cells, they mix two organic molecules in a solvent and evaporate the solvent to create a mixture which helps with the exciton conversion and electron transport,” Balasubramanian said. “We mimicked how these cells are created, in particular the bulk heterojunction – the absorption layer of a solar cell. Basically, we’re trying to understand how structure changes correlate with the efficiency of the solar conversion?”
Balasubramanian uses what he calls ‘physics-informed machine learning’. His research combines coarse-grained simulation – using approximate molecular models that represent the organic materials – and machine learning. Balasubramanian believes the combination helps prevent artificial intelligence from coming up with unrealistic solutions.
“A lot of research uses machine learning on raw data,” Balasubramanian said. “But more and more, there’s an interest in using physics-educated machine learning. That’s where I think lies the most benefit. Machine learning per se is simply mathematics. There’s not a lot of real physics involved in it.”
Writing in Computational Materials Science in February 2021, Balasubramanian and Munshi along with Wei Chen (Northwestern University), and TeYu Chien (University of Wyoming) described results from a set of virtual experiments on Frontera testing the effects of various design changes. These included altering the proportion of donor and receptor molecules in the bulk heterojunctions, and the temperature and amount of time spent in annealing – a cooling and hardening process that contributes to the stability of the product.
They harnessed the data to train a class of machine learning algorithms known as support vector machines to identify parameters in the materials and production process that would generate the most energy conversion efficiency, while maintaining structural strength and stability. Coupling these methods together, Balasubramanian’s team was able to reduce the time required to reach an optimal process by 40%.
“At the end of the day, molecular dynamics is the physical engine. That’s what captures the fundamental physics,” he said. “Machine learning looks at numbers and patterns, and evolutionary algorithms facilitate the simulations.”
Trade-Offs and Limitations
Like many industrial processes, there are trade-offs involved in tweaking any facet of the manufacturing process. Faster cooling may help increase power efficiency, but it may make the material brittle and prone-to-break, for instance. Balasubramanian and his team employed a multi-objective optimization algorithm that balances the benefits and drawbacks of each change to derive the overall optimal manufacturing process.
“When you try to optimize one particular variable, you are looking at the problem linearly,” he said. “But most of these efforts have multi-pronged challenges that you’re trying to solve simultaneously. There are trade-offs that you need to make, and synergistic roles that you must capture, to come to the right design.”
Balasubramanian’s simulations matched experimental results. They determined that the make-up of the heterojunction and the annealing temperature/timing have the largest effects on overall efficiency. They also found what proportion of the materials in the heterojunction is best for efficiency.
“There are certain conditions identified in literature which people claim are the best conditions for efficiency for those select molecules and processing behavior,” he said. “Our simulation were able to validate those and show that other possible criteria would not give you the same performance. We were able to realize the truth, but from the virtual world.”
With an award of more time on Frontera in 2021-22, Balasubramanian will add further layers to the machine learning system to make it more robust. He plans to add experimental data, as well as other modalities of computer models, such as electronic structure calculations.
“Heterogeneity in the data will improve the results,” he said. “We plan to do first principle simulations of materials and then feed that data into the machine learning model, as well as data from coarse-grained simulations.”
Balasubramanian believes that current organic photovoltaics may be reaching the limits of their efficiency. “There’s a wall that’s hard to penetrate and that’s the material,” he said. “These molecules we’ve used can only go so far. The next thing to try is to use our framework with other molecules and advanced materials.”
His team mined the literature to understand the features that increase solar efficiency and then trained a machine learning model to identify potential new molecules with ideal charge transport behaviors. They published their research in the Journal of Chemical Information and Modeling. Future work on Frontera will use Balasubramanian’s framework to explore and computationally test these alternative materials, assuming they can be produced.
“Once established, we can take realistic molecules that are made in the lab and put them in the framework we’ve created,” he said. “If we discover new materials that perform well, it will reduce the cost of solar power generation devices and help Mother Earth.”
Balasubramanian’s research harnesses the two things that computer simulations are critical for, he says. “One is to understand the science that we cannot study with the tools that we have in the real world. And the other is to expedite the science – streamline what we really have to do, which reduces our cost and time to make things and physically test them.”
Solar Energy
Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells

Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells
by Simon Mansfield
Sydney, Australia (SPX) Feb 21, 2025
Bifacial perovskite solar cells, known for their ability to capture sunlight from both the front and rear surfaces, have taken a significant step forward thanks to researchers at the Indian Institute of Technology (IIT) Dharwad. Their development of a novel NiO/Ag/NiO (NAN) hybrid transparent electrode has led to enhancements in efficiency, durability, and infrared transparency, opening new possibilities for solar energy applications.
A recent study published in the Journal of Photonics for Energy (JPE) details how the IIT Dharwad team designed and fabricated highly transparent bifacial solar cells utilizing a three-layer NAN electrode. This innovative structure, created using a low-energy physical vapor deposition method, resulted in an electrode with extremely low electrical resistance and high transmittance of visible light.
When incorporated into the bifacial solar cells, the NAN transparent electrode delivered impressive power conversion efficiencies (PCE), achieving 9.05% and 6.54% when exposed to light from different directions. The cells also exhibited a high bifaciality factor of 72%, demonstrating their effectiveness in utilizing light from both sides.
Beyond efficiency, these solar cells displayed exceptional durability, retaining 80% of their initial performance for over 1,000 hours without the need for protective encapsulation. Additionally, their ability to transmit substantial near-infrared light makes them suitable for applications such as thermal windows and advanced optoelectronic technologies.
With a thickness of less than 40 nm, the NAN electrode is particularly advantageous for integration into building materials and tandem solar cell systems. Senior researcher Dhriti Sundar Ghosh, an associate professor of physics at IIT Dharwad, emphasized the broad implications of their work, stating, “This study offers a blueprint for designing transparent electrodes in bifacial perovskite solar cells, paving the way for advancements in tandem devices, agrivoltaics, and automotive solar technologies.”
The findings reinforce the growing potential of bifacial perovskite solar cells in renewable energy solutions, contributing to the development of more efficient and adaptable solar power technologies.
Research Report:Hybrid top transparent electrode for infrared-transparent bifacial perovskite solar cells
Related Links
Indian Institute of Technology
All About Solar Energy at SolarDaily.com
Solar Energy
Bio-inspired approach creates bespoke photovoltaics

Bio-inspired approach creates bespoke photovoltaics
by David Nutt for Cornell Chronicle
Ithica NY (SPX) Feb 21, 2025
There is more to photovoltaic panels than the materials that comprise them: The design itself can also drive – or potentially diminish – the widespread adoption of solar technology.
Put bluntly: Most solar panels are not much to look at. And their flat, nonflexible composition means they can only be affixed to similarly flat structures. But what if photovoltaic panels were instead a hinged, lightweight fabric that was aesthetically attractive and could wrap around complex shapes, even contorting its form to better absorb sunlight?
Thus was born the idea for HelioSkin, an interdisciplinary project led by Jenny Sabin, the Arthur L. and Isabel B. Weisenberger Professor in Architecture in the College of Architecture, Art and Planning at Cornell University, in collaboration with Itai Cohen, professor of physics in the College of Arts and Sciences, and Adrienne Roeder, professor in the Section of Plant Biology in the School of Integrative Plant Science, in the College of Agriculture and Life Sciences and at the Weill Institute for Cell and Molecular Biology.
“What we’re really passionate about is how the system could not only produce energy in a passive way, but create transformational environments in urban or urban-rural settings,” Sabin said. “Sustainability is about performance and function, but equally, it’s about beauty and getting people to get excited about it, so they want to participate. The grand goal is to inspire widespread adoption of solar for societal impact.”
Sabin, the inaugural chair of the new multicollege Department of Design Tech, has made a career of collaborating with diverse disciplines and taking cues not just from architecture, but also engineering. And physics. And mathematics. And, perhaps most importantly, biology. All of her projects are united by the same question: How might buildings and their integrated material systems behave more like organisms, responding and adapting to their local environments?
“Nature is not efficient,” Sabin said. “It’s resilient, and biology is in it for the long game, over much longer time scales. Additionally, it has been demonstrated that plants that track the sun exhibit a photosynthetic advantage. And we think that’s a pretty powerful way to think about sustainability and resiliency in architecture.”
Sabin’s design interests address a very real need. The primary convergent problem is that 40% of total greenhouse gas emissions in the United States comes from buildings, according to the International Energy Agency.
“By developing a new solar skin product that can scale, we aim to turn the needle by getting homeowners and businesses to adopt solar to reduce the 28% of CO2 that comes from the heating, lighting and cooling of buildings,” Sabin said.
HelioSkin originated in a partnership between Sabin and Mariana Bertoni, an energy engineer at Arizona State University, who is also a member of the HelioSkin team. Together they combined computational design, digital fabrication and 3D printing to create customized filters and photovoltaic panel assemblies – what Sabin calls “nonstandard angularity” – that could simultaneously boost light absorption and architectural beauty. The key to that effort was looking at the mechanics of heliotropism – how sunflowers track sunlight.
For HelioSkin, that research foundation expanded to include Roeder’s expertise in heliotropism and cellular morphogenesis – i.e., how plant cells grow to bend the plant toward the sun – and Cohen’s specialization in using geometric methods such as origami and kirigami to improve the mechanical performance of metamaterials, increasing their flexibility while expending very little energy.
The flowering Arabidopsis plant is an ideal model for HelioSkin because, as “the fruit fly of the plant world” according to Roeder, it’s easy to study at the cellular level. Those cells play a vital role in changing the curvature of the plant’s stem as it angles toward the sunlight, with the Arabidopsis’ hormones causing the cells on its sunless side to expand by 25%, bending the stem 90 degrees.
“We’ve already figured out how to translate our plant cells’ tracking mechanism into Jenny’s architectural software,” Roeder said. “Now we have to start figuring out how to make that transition in HelioSkin.”
‘The human-centered design process’
The ultimate goal is to generate a mechanically tracking solar-collection skin for retractable roofs, stadiums and skyscrapers, but to get there, the team is launching a three-year pilot project whereby they create small solar canopies for backyards, which can then be scaled up for urban parks.
Bringing that vision to market not only involves scientific innovation and smart design, but requires industry partnerships, capital and a marketing plan.
The project was launched through the National Science Foundation’s Convergence Accelerator program, which last year awarded the team $650,000 in phase I funding. The team has applied for the next phase of funding – $5 million over three years.
The industry partners include E Ink and Rainier Industries, which are helping integrate photovoltaics and ePaper onto lightweight, stretchable architectural fabric. SunFlex, a company that uses laser-welded back contact module technology for photovoltaics manufacturing, is onboard to help refine the HelioSkin prototypes in phase 2 – the sensing, the wiring, the arrangement of the panels, plus the geometry and substrate.
By the pilot project’s second year, the team plans to have a full-scale backyard canopy prototype that can potentially provide light and power outdoor appliances; by the third year, they aim to be in the early stages of commercialization.
As part of their commercialization plan, the team conducted extensive marketing analysis and interviews that showed HelioSkin’s gross cost, the cost-per-watt and system capacity were competitive with existing PV products.
“This was a really encouraging and exciting process to go through, to see how we compare to existing products and the potential that we have to then scale,” Sabin said. “The human-centered design process, including engaging people in many different industries, from end users to potential stakeholders to people that work for the energy grid and the state or the region – that’s been a big part of our process, and it’s been really helpful.”
The analysis revealed niche applications that the team hadn’t initially considered, such as “big box” commercial businesses that want to pursue solar to attain net-zero emissions but are also interested in display advertising or colorful pattern change for aesthetic applications. To that end, the team is working with E Ink to create a HelioSkin with electrically powered responsive display features, so solar skins can be placed on retail structures and stadiums and function as ever-changing billboards.
“This was something that came out of interviews,” Sabin said. “We had never thought about these types of applications.”
One of the virtues of working with E Ink is the company uses roll-to-roll printing to mass produce photovoltaic sheets – the same method that makes the low-cost manufacturing of perovskite photovoltaics feasible.
“The basic idea is to try to print things in 2D, which is cheap, and then morph it into 3D, allowing it to curve around structures,” Cohen said. “You can’t just take a normal sheet of paper and wrap something. It’s going to have all sorts of creases to it. Like if you try to wrap an orange, you get all these crinkles. One of the innovations that we came up with was to cut the paper into a pattern of panels and hinges that allows it to locally stretch around these round objects. A second strategy we came up with is to use fabric as a way to make the hinge. Fabric is floppy enough to give you that hinge-like behavior.”
In her experimental architecture practice, Sabin has spent more than 15 years developing large urban-scale canopies and architectural installations, experience that has served her well in launching a product.
“There’s a strong focus on commercialization and developing IP management plans. As a designer, I have a practice, and so I find this really interesting,” Sabin said. “But it’s also completely new for most of my collaborators. They don’t necessarily think about this level of application and spinning out a product. So the learning curve around that is pretty steep for all of us.”
The ability to collaborate across disciplines is what initially drew Sabin to Cornell in 2011. It’s a place where “everybody has their door open,” she said. The excitement, and the opportunities for impact, are palpable.
“Bottom line, we are in New York’s mecca for solar,” she said. “So there’s a lot going on, both in terms of innovative research, but also applied systems, in farming and agrivoltaics, solar farms, etc. So that dynamic community of people actively working on a common set of goals and questions and problems is super exciting for us, too.”
Related Links
Department of Design Tech at Cornell
All About Solar Energy at SolarDaily.com
Solar Energy
China aims to add 200 GW in renewables

China aims to add 200 GW in renewables
by Simon Mansfield
Sydney, Australia (SPX) Mar 04, 2025
China is poised to make another substantial push in renewable energy expansion this year, targeting the addition of more than 200 gigawatts of renewable capacity. According to the National Energy Administration (NEA), this will contribute to an overall power generation capacity of approximately 10.6 trillion kilowatt-hours in 2025.
The nation’s total installed power capacity is expected to exceed 3.6 billion kilowatts by the end of the year, as outlined in the NEA’s newly released energy work guidelines. China is also advancing efforts to establish a unified national power market, with non-fossil fuel power generation projected to make up around 60 percent of total installed capacity. Additionally, non-fossil energy is anticipated to constitute about 20 percent of total energy consumption.
Industry analysts indicate that while new market-based pricing mechanisms for renewable energy grid connections introduce some uncertainty, the 200 GW target, though moderate, still provides ample opportunities for stakeholders in the renewable energy sector.
“The 200 GW installation goal for this year accounts for just 56 percent of the total wind and solar capacity added in 2024, but it underscores China’s continued commitment to renewable energy,” noted Zhu Yicong, vice-president of renewables and power research at Rystad Energy.
Zhu also acknowledged concerns raised following the NEA’s latest directive requiring renewable energy producers to fully integrate into power markets and adhere to market-based electricity pricing from June. “Although a vast number of renewable projects are either under development or nearing construction across various provinces, uncertainties regarding future financial returns could lead to delays in project implementation,” she said.
To enhance the market value of renewable energy and align prices with supply-demand dynamics, the National Development and Reform Commission and the NEA recently issued a notice emphasizing competitive market mechanisms for electricity pricing.
Industry projections suggest that renewable electricity prices could decline under the new pricing system, given the low variable costs associated with sources such as solar power, particularly during peak daylight hours. This price decline could introduce hesitation among investors assessing new projects.
Despite a relatively modest target for new installations this year, the industry sees this as a strategic approach, allowing developers time to adapt to evolving market conditions. “The moderate goal enables market participants to refine sustainable strategies without facing excessive pressure for rapid installation,” Zhu added.
Experts recommend that renewable energy developers navigate the transition to market-driven pricing by securing power purchase agreements, integrating battery storage solutions, and optimizing energy output for competitiveness.
China continues to prioritize renewable energy as a fundamental component of its green economy and dual-carbon objectives. In 2024, newly installed renewable capacity accounted for 86 percent of the nation’s total new power installations. The cumulative share of renewables in the country’s total installed capacity reached a record 56 percent, according to NEA data.
While renewable energy development surges, China’s overall energy production is set to maintain steady growth. Coal production will remain stable with some planned expansion, while crude oil output is expected to stay above 200 million metric tons. The country also plans to bolster its oil and gas reserves to enhance energy security.
Related Links
National Energy Administration
All About Solar Energy at SolarDaily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
TOP SCEINCE7 months ago
Searching old stem cells that stay young forever
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
world news5 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project