Solar Energy
Engineers design battery to power flying cars
Engineers at Penn State published plans Monday for a battery prototype they said is capable of powering flying cars.
“I think flying cars have the potential to eliminate a lot of time and increase productivity and open the sky corridors to transportation,” lead author Chao-Yang Wang said in a press release on the study, published in the journal Joule.
“But electric vertical takeoff and landing vehicles are very challenging technology for the batteries,” said Wang, director of the Electrochemical Engine Center at Penn State.
In the last couple of years, several prototypes have emerged — including from companies in South Korea, China, Slovakia and Japan — which incorporate technology from helicopters and cars to create a hybrid vehicle of sorts.
The prototypes include SkyDrive’s SD-03 vehicle that was tested in August, KleinVision’s AirCar that could be for sale as soon as this year and Xpeng Motors’ Kiwigogo vehicle that debuted at last year’s Beijing International Automotive Exhibition.
While some prototypes have included wheels, they all incorporate spinning rotors to facilitate takeoff and landing, including the air taxi shown off last year by Hyundai and Uber, which is basically a small helicopter.
While the AirCar runs on liquid fuel, the others are at least partially powered by electric — which means they require powerful batteries to fly.
In the new paper, Wang and his research partners established a variety of technical requirements for the batteries of electric vertical takeoff and landing vehicles, or eVTOLs.
In order to get a flying car off the ground, an electric battery must be able to deliver a lot of power and fast.
“Batteries for flying cars need very high energy density so that you can stay in the air,” Wang said. “And they also need very high power during take-off and landing. It requires a lot of power to go vertically up and down.”
Additionally, a flying car battery must ideally be able to be quickly recharged. Unlike most flying vehicles, eVTOLs will likely be taking off and landing rather frequently.
“Commercially, I would expect these vehicles to make 15 trips, twice a day during rush hour, to justify the cost of the vehicles,” he said. “The first use will probably be from a city to an airport carrying three to four people about 50 miles.”
In the lab, researchers tested the performance of a pair of energy-dense lithium-ion batteries capable of delivering the kind of power needed to sustain a 50-mile, 5- to 10-minute eVTOL trip.
The experiments showed the batteries were good for 2,000 fast-charges over the course of their lifetimes.
Tests involving batteries the team is developing for electric road vehicles — which are designed to offer a longer driving range with a faster charging time — showed heat is key to preventing lithium spikes, which can damage batteries and lead to dangerous battery failures.
To avoid this, Wang and his colleagues were able to rapidly heat the batteries by incorporating nickel foil into the design.
Researchers found suitable heating also allowed the batteries to deliver a rapid burst of power — the type of discharge required for take-offs and landings — more efficiently.
“Under normal circumstances, the three attributes necessary for an eVTOL battery work against each other,” Wang said. “High energy density reduces fast charging and fast charging usually reduces the number of possible recharge cycles. But we are able to do all three in a single battery.”
It’s easy to rapidly charge a battery that’s nearly drained, but frequent takeoffs and landings will require rapid charging of half-full batteries — a more difficult task. However, the latest research suggests sufficient heating can solve this problem, too.
“I hope that the work we have done in this paper will give people a solid idea that we don’t need another 20 years to finally get these vehicles,” Wang said. “I believe we have demonstrated that the eVTOL is commercially viable.”
Related Links
Powering The World in the 21st Century at Energy-Daily.com
Thanks for being here; We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. |
||
SpaceDaily Contributor
$5 Billed Once |
SpaceDaily Monthly Supporter $5 Billed Monthly paypal only |
Compound commonly found in candles lights the way to grid-scale energy storage
Richland, WA (SPX) Jun 06, 2021
A compound used widely in candles offers promise for a much more modern energy challenge – storing massive amounts of energy to be fed into the electric grid as the need arises.
Scientists at the U.S. Department of Energy’s Pacific Northwest National Laboratory have shown that low-cost organic compounds hold promise for storing grid energy. Common fluorenone, a bright yellow powder, was at first a reluctant participant, but with enough chemical persuasion has proven to be a potent partner for ener … read more
Solar Energy
Bolivia announces $1 bn deal with China to build lithium plants
Bolivia announces $1 bn deal with China to build lithium plants
by AFP Staff Writers
La Paz (AFP) Nov 27, 2024
Bolivia said Tuesday it had signed a $1 billion deal with China’s CBC, a subsidiary of the world’s largest lithium battery producer CATL, to build two lithium carbonate production plants in the country’s southwest.
Bolivia’s state-owned Bolivia Lithium Deposits (YLB) said the plants — one with an annual capacity of 10,000 tons of lithium carbonate and the other of 25,000 – would be situated in the vast Uyuni salt flats.
Lithium, nicknamed “white gold,” is a key component in the production of batteries for electric vehicles and mobile phones.
Bolivia claims to have the world’s largest lithium deposits.
President Luis Arce, who presided over Tuesday’s signing ceremony, said it paved the way for Bolivia to become “a very important player in determining the international price of lithium.”
The deal follows an earlier agreement reached last year between Russia’s Uranium One Group and YLB to build a $970 million lithium extraction facility, also in Uyuni.
Both deals have yet to be approved by Bolivia’s parliament.
Arce announced that negotiations were underway with China’s Citic Guoan Group for a third contract.
“We hope to close that deal as soon as possible,” he said.
Related Links
Solar Energy
The future of AI with solar-powered synaptic devices
The future of AI with solar-powered synaptic devices
by Riko Seibo
Tokyo, Japan (SPX) Nov 26, 2024
Artificial intelligence (AI) is increasingly relied upon for predicting critical events such as heart attacks, natural disasters, and infrastructure failures. These applications demand technologies capable of rapidly processing data. One such promising approach is reservoir computing, particularly physical reservoir computing (PRC), known for its efficiency in handling time-series data with minimal power consumption. Optoelectronic artificial synapses in PRC, mimicking human neural synaptic structures, are poised to enable advanced real-time data processing and recognition akin to the human visual system.
Existing self-powered optoelectronic synaptic devices, however, struggle to process time-series data across diverse timescales, which is essential for applications in environmental monitoring, infrastructure maintenance, and healthcare.
Addressing this challenge, researchers at Tokyo University of Science (TUS), led by Associate Professor Takashi Ikuno and including Hiroaki Komatsu and Norika Hosoda, have developed an innovative self-powered dye-sensitized solar cell-based optoelectronic photopolymeric human synapse. This groundbreaking device, featuring a controllable time constant based on input light intensity, represents a major advancement in the field. The study, published on October 28, 2024, in ‘ACS Applied Materials and Interfaces’, highlights the potential of this technology.
Dr. Ikuno explained, “To process time-series input optical data with various time scales, it is essential to fabricate devices according to the desired time scale. Inspired by the afterimage phenomenon of the eye, we came up with a novel optoelectronic human synaptic device that can serve as a computational framework for power-saving edge AI optical sensors.”
The new device integrates squarylium derivative-based dyes, incorporating optical input, AI computation, analog output, and power supply at the material level. It demonstrates synaptic plasticity, exhibiting features such as paired-pulse facilitation and depression in response to light intensity. The device achieves high computational performance in time-series data processing tasks while maintaining low power consumption, regardless of the input light pulse width.
Remarkably, the device achieved over 90% accuracy in classifying human movements, including bending, jumping, running, and walking, when used as the reservoir layer of PRC. Its power consumption is only 1% of that required by traditional systems, significantly reducing carbon emissions. Dr. Ikuno emphasized, “We have demonstrated for the first time in the world that the developed device can operate with very low power consumption and yet identify human motion with a high accuracy rate.”
This innovation holds significant promise for edge AI applications, including surveillance cameras, automotive sensors, and health monitoring systems. “This invention can be used as a massively popular edge AI optical sensor that can be attached to any object or person,” noted Dr. Ikuno. He further highlighted its potential to improve vehicle energy efficiency and reduce costs in standalone smartwatches and medical devices.
The novel solar cell-based device could redefine energy-efficient edge AI sensors across various applications, marking a significant leap forward in both technology and sustainability.
Research Report:Self-Powered Dye-Sensitized Solar-Cell-Based Synaptic Devices for Multi-Scale Time-Series Data Processing in Physical Reservoir Computing
Related Links
Tokyo University of Science
All About Solar Energy at SolarDaily.com
Solar Energy
Decarbonizing heavy industry with thermal batteries
Decarbonizing heavy industry with thermal batteries
by Zach Winn | MIT News
Boston MA (SPX) Nov 27, 2024
Whether you’re manufacturing cement, steel, chemicals, or paper, you need a large amount of heat. Almost without exception, manufacturers around the world create that heat by burning fossil fuels.
In an effort to clean up the industrial sector, some startups are changing manufacturing processes for specific materials. Some are even changing the materials themselves. Daniel Stack SM ’17, PhD ’21 is trying to address industrial emissions across the board by replacing the heat source.
Since coming to MIT in 2014, Stack has worked to develop thermal batteries that use electricity to heat up a conductive version of ceramic firebricks, which have been used as heat stores and insulators for centuries. In 2021, Stack co-founded Electrified Thermal Solutions, which has since demonstrated that its firebricks can store heat efficiently for hours and discharge it by heating air or gas up to 3,272 degrees Fahrenheit – hot enough to power the most demanding industrial applications.
Achieving temperatures north of 3,000 F represents a breakthrough for the electric heating industry, as it enables some of the world’s hardest-to-decarbonize sectors to utilize renewable energy for the first time. It also unlocks a new, low-cost model for using electricity when it’s at its cheapest and cleanest.
“We have a global perspective at Electrified Thermal, but in the U.S. over the last five years, we’ve seen an incredible opportunity emerge in energy prices that favors flexible offtake of electricity,” Stack says. “Throughout the middle of the country, especially in the wind belt, electricity prices in many places are negative for more than 20 percent of the year, and the trend toward decreasing electricity pricing during off-peak hours is a nationwide phenomenon. Technologies like our Joule Hive Thermal Battery will enable us to access this inexpensive, clean electricity and compete head to head with fossil fuels on price for industrial heating needs, without even factoring in the positive climate impact.”
A new approach to an old technology
Stack’s research plans changed quickly when he joined MIT’s Department of Nuclear Science and Engineering as a master’s student in 2014.
“I went to MIT excited to work on the next generation of nuclear reactors, but what I focused on almost from day one was how to heat up bricks,” Stack says. “It wasn’t what I expected, but when I talked to my advisor, [Principal Research Scientist] Charles Forsberg, about energy storage and why it was valuable to not just nuclear power but the entire energy transition, I realized there was no project I would rather work on.”
Firebricks are ubiquitous, inexpensive clay bricks that have been used for millennia in fireplaces and ovens. In 2017, Forsberg and Stack co-authored a paper showing firebricks’ potential to store heat from renewable resources, but the system still used electric resistance heaters – like the metal coils in toasters and space heaters – which limited its temperature output.
For his doctoral work, Stack worked with Forsberg to make firebricks that were electrically conductive, replacing the resistance heaters so the bricks produced the heat directly.
“Electric heaters are your biggest limiter: They burn out too fast, they break down, they don’t get hot enough,” Stack explains. “The idea was to skip the heaters because firebricks themselves are really cheap, abundant materials that can go to flame-like temperatures and hang out there for days.”
Forsberg and Stacks were able to create conductive firebricks by tweaking the chemical composition of traditional firebricks. Electrified Thermal’s bricks are 98 percent similar to existing firebricks and are produced using the same processes, allowing existing manufacturers to make them inexpensively.
Toward the end of his PhD program, Stack realized the invention could be commercialized. He started taking classes at the MIT Sloan School of Management and spending time at the Martin Trust Center for MIT Entrepreneurship. He also entered the StartMIT program and the I-Corps program, and received support from the U.S. Department of Energy and MIT’s Venture Mentoring Service (VMS).
“Through the Boston ecosystem, the MIT ecosystem, and with help from the Department of Energy, we were able to launch this from the lab at MIT,” Stack says. “What we spun out was an electrically conductive firebrick, or what we refer to as an e-Brick.”
Electrified Thermal contains its firebrick arrays in insulated, off-the-shelf metal boxes. Although the system is highly configurable depending on the end use, the company’s standard system can collect and release about 5 megawatts of energy and store about 25 megawatt-hours.
The company has demonstrated its system’s ability to produce high temperatures and has been cycling its system at its headquarters in Medford, Massachusetts. That work has collectively earned Electrified Thermal $40 million from various the Department of Energy offices to scale the technology and work with manufacturers.
“Compared to other electric heating, we can run hotter and last longer than any other solution on the market,” Stack says. “That means replacing fossil fuels at a lot of industrial sites that couldn’t otherwise decarbonize.”
Scaling to solve a global problem
Electrified Thermal is engaging with hundreds of industrial companies, including manufacturers of cement, steel, glass, basic and specialty chemicals, food and beverage, and pulp and paper.
“The industrial heating challenge affects everyone under the sun,” Stack says. “They all have fundamentally the same problem, which is getting their heat in a way that is affordable and zero carbon for the energy transition.”
The company is currently building a megawatt-scale commercial version of its system, which it expects to be operational in the next seven months.
“Next year will be a huge proof point to the industry,” Stack says. “We’ll be using the commercial system to showcase a variety of operating points that customers need to see, and we’re hoping to be running systems on customer sites by the end of the year. It’ll be a huge achievement and a first for electric heating because no other solution in the market can put out the kind of temperatures that we can put out.”
By working with manufacturers to produce its firebricks and casings, Electrified Thermal hopes to be able to deploy its systems rapidly and at low cost across a massive industry.
“From the very beginning, we engineered these e-bricks to be rapidly scalable and rapidly producible within existing supply chains and manufacturing processes,” Stack says. “If you want to decarbonize heavy industry, there will be no cheaper way than turning electricity into heat from zero-carbon electricity assets. We’re seeking to be the premier technology that unlocks those capabilities, with double digit percentages of global energy flowing through our system as we accomplish the energy transition.”
Related Links
Electrified Thermal Solutions
Powering The World in the 21st Century at Energy-Daily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
TOP SCEINCE8 months ago
Can animals count?