TOP SCEINCE
Healthy oceans need healthy soundscapes
Rain falls lightly on the ocean’s surface. Marine mammals chirp and squeal as they swim along. The pounding of surf along a distant shoreline heaves and thumps with metronomic regularity. These are the sounds that most of us associate with the marine environment. But the soundtrack of the healthy ocean no longer reflects the acoustic environment of today’s ocean, plagued with human-created noise.
A global team of researchers set out to understand how human-made noise affects wildlife, from invertebrates to whales, in the oceans, and found overwhelming evidence that marine fauna, and their ecosystems, are negatively impacted by noise. This noise disrupts their behavior, physiology, reproduction and, in extreme cases, causes mortality. The researchers call for human-induced noise to be considered a prevalent stressor at the global scale and for policy to be developed to mitigate its effects.
The research, led by Professor Carlos M. Duarte, distinguished professor at King Abdullah University of Science and Technology (KAUST), and published in the journal Science, is eye opening to the global prevalence and intensity of the impacts of ocean noise. Since the Industrial Revolution, humans have made the planet, the oceans in particular, noisier through fishing, shipping, infrastructure development and more, while also silencing the sounds from marine animals that dominated the pristine ocean.
“The landscape of sound — or soundscape — is such a powerful indicator of the health of an environment,” noted Ben Halpern, a coauthor on the study and director of the National Center for Ecological Analysis and Synthesis at UC Santa Barbara. “Like we have done in our cities on land, we have replaced the sounds of nature throughout the ocean with those of humans.”
The deterioration of habitats, such as coral reefs, seagrass meadows and kelp beds with overfishing, coastal development, climate change and other human pressures, have further silenced the characteristic sound that guides the larvae of fish and other animals drifting at sea into finding and settling on their habitats. The call home is no longer audible for many ecosystems and regions.
The Anthropocene marine environment, according to the researchers, is polluted by human-made sound and should be restored along sonic dimensions, and along those more traditional chemical and climatic. Yet, current frameworks to improve ocean health ignore the need to mitigate noise as a pre-requisite for a healthy ocean.
Sound travels far, and quickly, underwater. And marine animals are sensitive to sound, which they use as a prominent sensorial signal guiding all aspects of their behavior and ecology. “This makes the ocean soundscape one of the most important, and perhaps under-appreciated, aspects of the marine environment,” the study states. The authors’ hope is that the evidence presented in the paper will “prompt management actions … to reduce noise levels in the ocean, thereby allowing marine animals to re-establish their use of ocean sound.”
“We all know that no one really wants to live right next to a freeway because of the constant noise,” commented Halpern. “For animals in the ocean, it’s like having a mega-freeway in your backyard.”
The team set out to document the impact of noise on marine animals and on marine ecosystems around the world. They assessed the evidence contained across more than 10,000 papers to consolidate compelling evidence that human-made noise impacts marine life from invertebrates to whales across multiple levels, from behavior to physiology.
“This unprecedented effort, involving a major tour de force, has shown the overwhelming evidence for the prevalence of impacts from human-induced noise on marine animals, to the point that the urgency of taking action can no longer be ignored,” KAUST Ph.D. student Michelle Havlik said. The research involved scientists from Saudi Arabia, Denmark, the U.S. and the U.K., Australia, New Zealand, the Netherlands, Germany, Spain, Norway and Canada.
“The deep, dark ocean is conceived as a distant, remote ecosystem, even by marine scientists,” Duarte said. “However, as I was listening, years ago, to a hydrophone recording acquired off the U.S. West Coast, I was surprised to hear the clear sound of rain falling on the surface as the dominant sound in the deep-sea ocean environment. I then realized how acoustically connected the ocean surface, where most human noise is generated, is to the deep sea; just 1,000 m, less than 1 second apart!”
The takeaway of the review is that “mitigating the impacts of noise from human activities on marine life is key to achieving a healthier ocean.” The KAUST-led study identifies a number of actions that may come at a cost but are relatively easy to implement to improve the ocean soundscape and, in so doing, enable the recovery of marine life and the goal of sustainable use of the ocean. For example, simple technological innovations are already reducing propeller noise from ships, and policy could accelerate their use in the shipping industry and spawn new innovations.
Deploying these mitigation actions is a low hanging fruit as, unlike other forms of human pollution such as emissions of chemical pollutants and greenhouse gases, the effects of noise pollution cease upon reducing the noise, so the benefits are immediate. The study points to the quick response of marine animals to the human lockdown under COVID-19 as evidence for the potential rapid recovery from noise pollution.
Using sounds gathered from around the globe, multimedia artist and study coauthor Jana Winderen created a six-minute audio track that demonstrates both the peaceful calm, and the devastatingly jarring, acoustic aspects of life for marine animals. The research is truly eye opening, or rather ear opening, both in its groundbreaking scale as well as in its immediacy.
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles
A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions
A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal