TOP SCEINCE
Neanderthals and humans lived side by side in Northern Europe 45,000 years ago
A genetic analysis of bone fragments unearthed at an archaeological site in central Germany shows conclusively that modern humans — Homo sapiens — had already reached Northern Europe 45,000 years ago, overlapping with Neanderthals for several thousand years before the latter went extinct.
The evidence that Homo sapiens and Homo neanderthalensis lived side by side is consistent with genomic evidence that the two species occasionally interbred. It also feeds the suspicion that the invasion of Europe and Asia by modern humans some 50,000 years ago helped drive Neanderthals, which had occupied the area for more than 500,000 years, to extinction.
The genetic analysis, along with an archaeological and isotopic analysis and radiocarbon dating of the Ranis site, are detailed in a trio of papers appearing today in the journals Nature and Nature Ecology and Evolution.
The stone blades at Ranis, referred to as leaf points, are similar to stone tools found at several sites in Moravia, Poland, Germany and the United Kingdom. These tools that are thought to have been produced by the same culture, referred to as the Lincombian-Ranisian-Jerzmanowician (LRJ) culture or technocomplex. Because of previous dating, the Ranis site was known to be 40,000 years old or older, but without recognizable bones to indicate who made the tools, it was unclear whether they were the product of Neanderthals or Homo sapiens.
The new findings demonstrate that “Homo sapiens made this technology, and that Homo sapiens were this far north at this time period, which is 45,000 years ago,” said Elena Zavala, one of four first authors of the Nature paper and a Miller Research Fellow at the University of California, Berkeley. “So these are among the earliest Homo sapiens in Europe.”
Zavala was a Ph.D. student at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA) in Leipzig in 2018 when she first began working on the project, which was a major effort spearheaded by Jean-Jacque Hublin, former director of the institute and a professor at the Collège de France in Paris.
“The Ranis cave site provides evidence for the first dispersal of Homo sapiens across the higher latitudes of Europe. It turns out that stone artifacts that were thought to be produced by Neanderthals were, in fact, part of the early Homo sapiens toolkit,” Hublin said. “This fundamentally changes our previous knowledge about the period: Homo sapiens reached northwestern Europe long before Neanderthal disappearance in southwestern Europe.”
Bones from maternal relatives?
Zavala conducted the genetic analysis of hominid bone fragments from the new and deeper excavations at Ranis between 2016 and 2022 and from earlier excavations in the 1930s. Because the DNA in ancient bones is highly fragmented, she employed special techniques to isolate and sequence the DNA, all of it mitochondrial DNA (mtDNA) that is inherited solely from the mother.
“We confirmed that the skeletal fragments belonged to Homo sapiens. Interestingly, several fragments shared the same mitochondrial DNA sequences — even fragments from different excavations,” she said. “This indicates that the fragments belonged to the same individual or their maternal relatives, linking these new finds with the ones from decades ago.”
The bone fragments were initially identified as human through analysis of bone proteins — a field called paleoproteomics — by another first author, Dorothea Mylopotamitaki, a doctoral student at the Collège de France and fomerly of MPI-EVA.
By comparing the Ranis mitochondrial DNA sequences with mtDNA sequences obtained from human remains at other paleolithic sites in Europe, Zavala was able to construct a family tree of early Homo sapiens across Europe. All but one of the 13 Ranis fragments were quite similar to one another and, surprisingly, resembled mtDNA from the 43,000-year-old skull of a woman discovered in a cave at Zlatý k?? in the Czech Republic. The lone standout grouped with an individual from Italy.
“That raises some questions: Was this a single population? What could be the relationship here?” Zavala said. “But with mitochondrial DNA, that’s only one side of the history. It’s only the maternal side. We would need to have nuclear DNA to be able to start looking into this.”
A transitional site between Middle and Upper Paleolithic
Zavala specializes in the analysis of DNA found in long-buried bones, on bone tools and in sediment. Her search through sediment from various levels of the Ranis excavation turned up DNA from a broad array of mammals, but none from hominids. The analysis, combined with morphological, isotopic and proteomic analysis of bone fragments, paints a picture of the environment at that time and of the diet of both humans and animals that occupied the cave over the millennia.
The presence of reindeer, cave bear, woolly rhinoceros and horse bones, for example, indicated cold climatic conditions typical of steppe tundra and similar to conditions in Siberia and northern Scandinavia today, and a human diet based on large terrestrial animals. The researchers concluded that the cave was used primarily by hibernating cave bears and denning hyenas, with only periodic human presence.
“This lower-density archaeological signature matches other Lincombian-Ranisian-Jerzmanowician sites and is best explained by expedient visits of short duration by small, mobile groups of pioneer H. sapiens,” according to one of the papers published in Nature Ecology and Evolution.
“This shows that even these earlier groups of Homo sapiens dispersing across Eurasia already had some capacity to adapt to such harsh climatic conditions,” said Sarah Pederzani, a postdoctoral fellow at the University of La Laguna in Spain, who led the paleoclimate study of the site. “Until recently, it was thought that resilience to cold-climate conditions did not appear until several thousand years later, so this is a fascinating and surprising result.”
The Ranis site, called Ilsenhöhle and located at the base of a castle, was initially excavated mainly between 1932 and 1938. The leaf points found there were eventually assigned to the final years of the Middle Paleolithic period — between about 300,000 and 30,000 years ago — or the beginning of the Upper Paleolithic, which begins around 50,000 years ago.
Because of the importance of the Ranis site for understanding the LRJ technocomplex and the transition from the Neanderthal-associated late Middle Paleolithic to the modern human Upper Paleolithic in central Europe, Hublin and his team decided to reexcavate the site using modern tools of archaeology.
The new excavations extended to bedrock, about 8 meters below the surface, and involved removing a rock — likely fallen from the cave ceiling — that had halted the previous excavation. Here, Hublin’s team uncovered chips from flint tools and a quartzite flake consistent with the LRJ technocomplex. Subsequent proteomic analysis of thousands of recovered bone chips confirmed that four were from hominids. Of bone chips uncovered during the 1930s excavations, nine were from hominids.
Zavala’s DNA analysis confirmed that all 13 bone fragments came from Homo sapiens.
A revised settlement history of Northern Europe
The team also carried out radiocarbon dating of human and animal bones from different layers of the site to reconstruct the site’s chronology, focusing on bones with traces of human modifications on their surfaces, which links their dates to human presence in the cave.
“We found very good agreement between the radiocarbon dates from the Homo sapiens bones from both excavation collections and with modified animal bones from the LRJ layers of the new excavation, making a very strong link between the human remains and LRJ. The evidence suggests that Homo sapiens were sporadically occupying the site from as early as 47,500 years ago,” said another first author, Helen Fewlass, a former Max Planck researcher who is now a European Molecular Biology Organization (EMBO) Postdoctoral Fellow at the Francis Crick Institute in London.
“The results from the Ilsenhöhle in Ranis fundamentally changed our ideas about the chronology and settlement history of Europe north of the Alps,” added Tim Schüler of the Thuringian State Office for the Preservation of Historical Monuments and Archaeology in Weimar, Germany.
Among other co-authors of the Nature paper are co-first author Marcel Weiss of the Friedrich-Alexander-Universität Erlangen-Nürnberg and Shannon McPherron of MPI-EVA, who co-led the Ranis excavation with Hublin, Schüler and Weiss. Zavala, in addition to being co-first author of the Nature paper, co-authored the two papers in Nature Ecology and Evolution.
The excavations and much of the subsequent analysis were financially supported by the Max Planck Society.
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles
A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions
A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
Sony a9 III: what you need to know
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies