Connect with us

Solar Energy

New perovskite LED emits a spin-polarized glow

Published

on

New perovskite LED emits a spin-polarized glow

The inclusion of a special new perovskite layer has enabled scientists to create a “spin-polarized LED” without needing a magnetic field or extremely low temperatures, potentially clearing the path to a raft of novel technologies.

Details of the research conducted at the National Renewable Energy Laboratory (NREL) and the University of Utah appear in the journal Science.

Researchers at NREL and around the world have been investigating the use of perovskite semiconductors for solar cells that have proven to be highly efficient at converting sunlight to electricity. Since a solar cell is one of the most demanding applications of any semiconductor, scientists are discovering other uses exist as well.

“We are exploring the fundamental properties of metal-halide perovskites, which has allowed us to discover new applications, beyond photovoltaics,” said Joseph Luther, a co-author of the new paper, “Chiral-induced spin selectivity enabling a room-temperature spin light-emitting diode.” “Because metal-halide perovskites, and other related systems, are some of the most fascinating semiconductors, they exhibit a host of novel phenomena that can be utilized in transforming energy.”

The other co-authors from NREL are Matthew Beard, a senior research fellow and director of the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), Young-Hoon Kim, Yaxin Zhai, Haipeng Lu, Chuanxiao Xiao, E. Ashley Gaulding, Steven Harvey, and Joseph Berry. Valy Vardeny and Xin Pan are co-authors from Utah. All are part of CHOISE, an Energy Frontier Research Center (EFRC) funded by the Office of Science within DOE.

The goals of the CHOISE EFRC are to control the interconversion of charge, spin, and light using carefully designed chemical systems. Most opto-electronic devices in use today only control charge and light and not the spin of the electron. An electron can have either “up” or “down” spins. Using two different perovskite layers, the researchers were able to control the spin by creating a filter that blocks electrons “spinning” in the wrong direction.

One way to produce spin-polarized currents is through a “chiral-induced spin selectivity” layer, where the transport of electrons with “up” or “down” spin states depends upon the chirality of the transporting materials. Chirality refers to the materials structure where it is not identical to its mirror image. For example, a “left-handed” oriented chiral system may allow transport of electrons with “up” spins but block electrons with “down” spins and vice versa.

The filter enabled the researchers to inject spin-polarized charges into a light-emitting diode (LED) at room temperature–instead of at hundreds of degrees below zero Fahrenheit–and without the use of magnetic fields or ferromagnetic contacts that are typically needed to control the spin degree of freedom.

The LED, in response, emits light with special chiral properties, accordingly. The concept proves that using these chiral-hybrid systems gains control over spin without magnets and has “broad implications for applications such as quantum-based optical computing, bioencoding, and tomography,” according to Beard.



SOLAR DAILY
Producing highly efficient LEDs based on 2D perovskite films

Hong Kong (SPX) Mar 11, 2021


Energy-efficient light-emitting diodes (LEDs) have been used in our everyday life for many decades. But the quest for better LEDs, offering both lower costs and brighter colours, has recently drawn scientists to a material called perovskite. A recent joint-research project co-led by the scientist from City University of Hong Kong (CityU) has now developed a 2D perovskite material for the most efficient LEDs.

From household lighting to mobile phone displays, from pinpoint lighting needed for endosc … read more

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Innovative approach to perovskite solar cells achieves 24.5% efficiency

Published

on

By

Innovative approach to perovskite solar cells achieves 24.5% efficiency


Innovative approach to perovskite solar cells achieves 24.5% efficiency

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






In groundbreaking research published in Nano Energy, a team led by Prof. CHEN Chong at the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has significantly improved the performance of perovskite solar cells (PSCs). By integrating inorganic nano-material tin sulfoxide (SnSO) as a dopant, they have boosted the photoelectric conversion efficiency (PCE) of PSCs to an impressive 24.5%.

Traditional methods of enhancing the charge transport in the critical hole transport layer (HTL) of PSCs involve the use of lithium trifluoromethanesulfonyl imide (Li-TFSI) to facilitate the oxidation of the HTL material spiro-OMeTAD. However, this method suffers from low doping efficiency and can leave excess Li-TFSI in the spiro-OMeTAD film, reducing its compactness and long-term conductivity. Additionally, the oxidation process typically requires 10-24 hours to achieve the desired electrical conductivity and work function.



The HFIPS team’s innovation lies in their development of a rapid and replicable method to control the oxidation of nanomaterials, using SnSO nanomaterial to pre-oxidize spiro-OMeTAD in precursor solutions. This novel approach not only enhances conductivity but also optimizes the energy level position of the HTL, culminating in a high PCE of 24.5%.



One of the key advantages of the SnSO-regulated spiro-OMeTAD HTL is its pinhole-free, uniform, and smooth morphology, which maintains its performance and physical integrity even under challenging conditions of high temperature and humidity. Additionally, the oxidation process facilitated by this method is significantly faster, taking only a few hours- a crucial factor in improving the commercial production efficiency of PSCs.



Prof. CHEN Chong highlighted the importance of this breakthrough, stating, “Also, the oxidation process only takes a few hours, which is good for improving the commercial preparation efficiency of PSCs.” This advancement not only marks a significant leap in the efficiency and stability of PSCs but also holds substantial implications for their commercial viability.



Research Report:A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells


Related Links

Hefei Institutes of Physical Science

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Revolutionary technique boosts flexible solar cell efficiency to record high

Published

on

By

Revolutionary technique boosts flexible solar cell efficiency to record high


Revolutionary technique boosts flexible solar cell efficiency to record high

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






Researchers at Tsinghua University have made a significant breakthrough in the efficiency of flexible solar cells, leveraging a novel fabrication technique to set a new efficiency record. This advancement addresses the longstanding challenge of the lower energy conversion efficiency in flexible solar cells compared to their rigid counterparts, offering promising implications for aerospace and flexible electronics applications.

Flexible perovskite solar cells (FPSCs), despite their potential, have historically lagged in efficiency due to the polyethylene terephthalate (PET)-based flexible substrate’s inherent softness and inhomogeneity. This limitation, coupled with durability issues arising from the substrate’s susceptibility to water and oxygen infiltration, has hindered the practical deployment of FPSCs.



The team from the State Key Laboratory of Power System Operation and Control at Tsinghua University, alongside collaborators from the Center for Excellence in Nanoscience at the National Center for Nanoscience and Technology in Beijing, introduced a chemical bath deposition (CBD) technique. This method facilitates the deposition of tin oxide (SnO2) on flexible substrates without the need for strong acids, which are detrimental to such substrates. Tin oxide is essential for the FPSCs as it acts as an electron transport layer, crucial for the cells’ power conversion efficiency.



Associate Professor Chenyi Yi, a senior author of the study, explained, “Our method utilizes SnSO4 tin sulfate instead of SnCl2 tin chloride, making it suitable for acid-sensitive flexible substrates. This approach not only enhances the efficiency of FPSCs but also their durability, with a new power conversion efficiency benchmark set at 25.09%, certified at 24.90%.”



The novel fabrication technique also contributes to the FPSCs’ stability, as demonstrated by the cells maintaining 90% of their initial efficiency after being bent 10,000 times. The researchers noted an improved high-temperature stability in SnSO4-based FPSCs over those made with SnCl2, pointing towards the dual benefits of efficiency and durability enhancements.



The research signifies a leap towards industrial-scale production of high-efficiency FPSCs, with potential applications ranging from wearable technology and portable electronics to aerospace power sources and large-scale renewable energy solutions. The team’s findings, supported by Ningyu Ren, Liguo Tan, Minghao Li, Junjie Zhou, Yiran Ye, Boxin Jiao, and Liming Ding, mark a pivotal step in transitioning FPSCs from laboratory to commercial use.



Research Report:25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2


Related Links

Tsinghua University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

KAUST advances in perovskite-silicon tandem cells

Published

on

By

KAUST advances in perovskite-silicon tandem cells


KAUST advances in perovskite-silicon tandem cells

by Sophie Jenkins

London, UK (SPX) Mar 28, 2024






In 2009, researchers introduced perovskite-based solar cells, highlighting the potential of methylammonium lead bromide and methylammonium lead iodide-known as lead halide perovskites-for photovoltaic research. These materials, notable for their excellent light-absorbing properties, marked the beginning of an innovative direction in solar energy generation. Since then, the efficiency of perovskite solar cells has significantly increased, indicating a future where they are used alongside traditional silicon in solar panels.

Erkan Aydin, Stefaan De Wolf, and their team at King Abdullah University of Science and Technology (KAUST) have explored how this tandem technology could transition from experimental stages to commercial production. Perovskites are lauded for their low-temperature production process and their flexibility in application, offering a lighter, more adaptable, and potentially cost-effective alternative to silicon-based panels.



Combining perovskite with silicon in a single solar cell leverages the strengths of both materials, enhancing sunlight utilization and reducing losses that aren’t converted into electrical energy. “The synergy between perovskite and silicon technologies in tandem cells captures a broader spectrum of sunlight, minimizing energy loss and significantly boosting efficiency,” Aydin notes.



However, Aydin and his colleagues acknowledge challenges in scaling tandem solar-cell fabrication for the marketplace. For instance, the process of depositing perovskite on silicon surfaces is complicated by the silicon’s texture. Traditional laboratory methods like spin coating are not feasible for large-scale production due to their inefficiency and material wastage. Alternatives such as slot-die coating and physical vapor deposition present their own set of advantages and challenges.



Moreover, the durability of perovskite components under environmental stressors such as moisture, heat, and light remains a critical concern. Aydin emphasizes the need for focused research to enhance the reliability and lifespan of perovskite/silicon tandem cells, especially in harsh conditions.



Although tandem modules have already been demonstrated in proof-of-concept stages, the timeline for their market readiness is uncertain. Nonetheless, the successful development of efficient, commercial-grade perovskite/silicon solar cells is essential for meeting global energy demands sustainably.



Research Report:Pathways toward commercial perovskite/silicon tandem photovoltaics


Related Links

King Abdullah University of Science and Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.