Connect with us

Solar Energy

Plastic solar cells combine high-speed optical communication with indoor energy harvesting

Published

on

Plastic solar cells combine high-speed optical communication with indoor energy harvesting

Around the world there are currently more than 18 billion internet-connected mobile devices. In the next 10 years, anticipated growth in the Internet of Things (IoT) and in machine-type communication in general, will lead to a world of hundreds of billions of data-connected objects. Such growth poses two very challenging problems:

How can we securely connect so many wireless devices to the Internet when the radio-frequency bandwidth has already become very scarce?

How can all these devices be powered?

Regular, manual charging of all mobile Internet-connected devices will not be feasible, and connection to the power-grid cannot be generally assumed. Therefore, many of these mobile devices will need to be able to harvest energy to become largely energy-autonomous.

In a new paper published in Light Science and Application, researchers from the University of Strathclyde and the University of St Andrews have demonstrated a plastic solar panel that combines indoor optical energy harvesting with simultaneously receiving multiple high-speed data signals by multiple-input multiple-output (MIMO) visible light communications (VLC).

The research, led by Professor Harald Haas from the Strathclyde LiFi Research and Development Centre, and Professors Ifor Samuel and Graham Turnbull at the St Andrews Organic Semiconductor Centre, makes an important step towards the future realization of self-powered data-connected devices.

The research teams showed that organic photovoltaics (OPVs), solar cells made from similar plastic-like materials to those used in OLED smartphone displays, are suitable for high-speed optical data receivers that can also harvest power. Using an optimized combination of organic semiconductor materials, stable OPVs were designed and fabricated for efficient power conversion of indoor lighting.

A panel of 4 OPV cells was then used in an optical wireless communication experiment, receiving a data rate of 363 Mb/s from an array of 4 laser diodes (each laser transmitting a separate signal), while simultaneously harvesting 11 mW of optical power.

Prof Turnbull explained: “Organic photovoltaics offers an excellent platform for indoor power harvesting for mobile devices. Their advantage over silicon is that the materials can be designed to achieve maximum quantum efficiency for typical LED lighting wavelengths. Combined with the data reception capability, this opens up a significant opportunity for self-powered Internet of Things devices.”

Prof Haas added: “Organic photovoltaic cells are very attractive because they are easily made and can be flexible, allowing mass integration into internet-connected devices. In addition, compared to inorganic detectors, OPVs have the potential to be significantly cheaper, which is a key driver to their large-scale commercial adoption.

Visible light communication provides unregulated, safe and vast resources to alleviate emerging wireless capacity bottlenecks. Of course, visible light can also provide energy. To achieve both objectives with a single device, new solar cells are needed.

They must be capable of simultaneously harvesting energy and detecting data at high speeds. It is, therefore, essential to develop solar cells that have two key features: a) they exhibit a very large electrical bandwidth in the photovoltaic mode of operation, and b) have a large collection area to be able to collect a sufficient number of photons to achieve high signal-to-noise ratio (SNR) and harvest maximum energy from light.

Regrettably, the two requirements are typically mutually exclusive because a large detector area results in a high capacitance and hence low electrical bandwidth. In this research, we have overcome this fundamental limitation by using an array of OPV cells as a MIMO receiver to establish multiple parallel and independent data channels while being able to accumulate the harvested energies of all individual solar cells. To the best of our knowledge, this has never been shown before.

This work therefore lays the foundation for the creation of a very large, massive MIMO solar cell receiver enabling hundreds and potentially thousands of individual data streams while using the huge collection area to harvest large amounts of energy from light (both data carrying and ambient light). It is imaginable to turn entire walls into a gigabit per second data detector while harvesting sufficient energy to power many distributed intelligent sensors, data processing and communication nodes.”

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Aartech Bags Supply Order To Deliver Uacapacitor-Based Systems To Indian Army

Leave a Reply

Solar Energy

Innovative approach to perovskite solar cells achieves 24.5% efficiency

Published

on

By

Innovative approach to perovskite solar cells achieves 24.5% efficiency


Innovative approach to perovskite solar cells achieves 24.5% efficiency

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






In groundbreaking research published in Nano Energy, a team led by Prof. CHEN Chong at the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has significantly improved the performance of perovskite solar cells (PSCs). By integrating inorganic nano-material tin sulfoxide (SnSO) as a dopant, they have boosted the photoelectric conversion efficiency (PCE) of PSCs to an impressive 24.5%.

Traditional methods of enhancing the charge transport in the critical hole transport layer (HTL) of PSCs involve the use of lithium trifluoromethanesulfonyl imide (Li-TFSI) to facilitate the oxidation of the HTL material spiro-OMeTAD. However, this method suffers from low doping efficiency and can leave excess Li-TFSI in the spiro-OMeTAD film, reducing its compactness and long-term conductivity. Additionally, the oxidation process typically requires 10-24 hours to achieve the desired electrical conductivity and work function.



The HFIPS team’s innovation lies in their development of a rapid and replicable method to control the oxidation of nanomaterials, using SnSO nanomaterial to pre-oxidize spiro-OMeTAD in precursor solutions. This novel approach not only enhances conductivity but also optimizes the energy level position of the HTL, culminating in a high PCE of 24.5%.



One of the key advantages of the SnSO-regulated spiro-OMeTAD HTL is its pinhole-free, uniform, and smooth morphology, which maintains its performance and physical integrity even under challenging conditions of high temperature and humidity. Additionally, the oxidation process facilitated by this method is significantly faster, taking only a few hours- a crucial factor in improving the commercial production efficiency of PSCs.



Prof. CHEN Chong highlighted the importance of this breakthrough, stating, “Also, the oxidation process only takes a few hours, which is good for improving the commercial preparation efficiency of PSCs.” This advancement not only marks a significant leap in the efficiency and stability of PSCs but also holds substantial implications for their commercial viability.



Research Report:A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells


Related Links

Hefei Institutes of Physical Science

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Revolutionary technique boosts flexible solar cell efficiency to record high

Published

on

By

Revolutionary technique boosts flexible solar cell efficiency to record high


Revolutionary technique boosts flexible solar cell efficiency to record high

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






Researchers at Tsinghua University have made a significant breakthrough in the efficiency of flexible solar cells, leveraging a novel fabrication technique to set a new efficiency record. This advancement addresses the longstanding challenge of the lower energy conversion efficiency in flexible solar cells compared to their rigid counterparts, offering promising implications for aerospace and flexible electronics applications.

Flexible perovskite solar cells (FPSCs), despite their potential, have historically lagged in efficiency due to the polyethylene terephthalate (PET)-based flexible substrate’s inherent softness and inhomogeneity. This limitation, coupled with durability issues arising from the substrate’s susceptibility to water and oxygen infiltration, has hindered the practical deployment of FPSCs.



The team from the State Key Laboratory of Power System Operation and Control at Tsinghua University, alongside collaborators from the Center for Excellence in Nanoscience at the National Center for Nanoscience and Technology in Beijing, introduced a chemical bath deposition (CBD) technique. This method facilitates the deposition of tin oxide (SnO2) on flexible substrates without the need for strong acids, which are detrimental to such substrates. Tin oxide is essential for the FPSCs as it acts as an electron transport layer, crucial for the cells’ power conversion efficiency.



Associate Professor Chenyi Yi, a senior author of the study, explained, “Our method utilizes SnSO4 tin sulfate instead of SnCl2 tin chloride, making it suitable for acid-sensitive flexible substrates. This approach not only enhances the efficiency of FPSCs but also their durability, with a new power conversion efficiency benchmark set at 25.09%, certified at 24.90%.”



The novel fabrication technique also contributes to the FPSCs’ stability, as demonstrated by the cells maintaining 90% of their initial efficiency after being bent 10,000 times. The researchers noted an improved high-temperature stability in SnSO4-based FPSCs over those made with SnCl2, pointing towards the dual benefits of efficiency and durability enhancements.



The research signifies a leap towards industrial-scale production of high-efficiency FPSCs, with potential applications ranging from wearable technology and portable electronics to aerospace power sources and large-scale renewable energy solutions. The team’s findings, supported by Ningyu Ren, Liguo Tan, Minghao Li, Junjie Zhou, Yiran Ye, Boxin Jiao, and Liming Ding, mark a pivotal step in transitioning FPSCs from laboratory to commercial use.



Research Report:25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2


Related Links

Tsinghua University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

KAUST advances in perovskite-silicon tandem cells

Published

on

By

KAUST advances in perovskite-silicon tandem cells


KAUST advances in perovskite-silicon tandem cells

by Sophie Jenkins

London, UK (SPX) Mar 28, 2024






In 2009, researchers introduced perovskite-based solar cells, highlighting the potential of methylammonium lead bromide and methylammonium lead iodide-known as lead halide perovskites-for photovoltaic research. These materials, notable for their excellent light-absorbing properties, marked the beginning of an innovative direction in solar energy generation. Since then, the efficiency of perovskite solar cells has significantly increased, indicating a future where they are used alongside traditional silicon in solar panels.

Erkan Aydin, Stefaan De Wolf, and their team at King Abdullah University of Science and Technology (KAUST) have explored how this tandem technology could transition from experimental stages to commercial production. Perovskites are lauded for their low-temperature production process and their flexibility in application, offering a lighter, more adaptable, and potentially cost-effective alternative to silicon-based panels.



Combining perovskite with silicon in a single solar cell leverages the strengths of both materials, enhancing sunlight utilization and reducing losses that aren’t converted into electrical energy. “The synergy between perovskite and silicon technologies in tandem cells captures a broader spectrum of sunlight, minimizing energy loss and significantly boosting efficiency,” Aydin notes.



However, Aydin and his colleagues acknowledge challenges in scaling tandem solar-cell fabrication for the marketplace. For instance, the process of depositing perovskite on silicon surfaces is complicated by the silicon’s texture. Traditional laboratory methods like spin coating are not feasible for large-scale production due to their inefficiency and material wastage. Alternatives such as slot-die coating and physical vapor deposition present their own set of advantages and challenges.



Moreover, the durability of perovskite components under environmental stressors such as moisture, heat, and light remains a critical concern. Aydin emphasizes the need for focused research to enhance the reliability and lifespan of perovskite/silicon tandem cells, especially in harsh conditions.



Although tandem modules have already been demonstrated in proof-of-concept stages, the timeline for their market readiness is uncertain. Nonetheless, the successful development of efficient, commercial-grade perovskite/silicon solar cells is essential for meeting global energy demands sustainably.



Research Report:Pathways toward commercial perovskite/silicon tandem photovoltaics


Related Links

King Abdullah University of Science and Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.