Solar Energy
Squeezing a rock-star material could make it stable enough for solar cells
Among the materials known as perovskites, one of the most exciting is a material that can convert sunlight to electricity as efficiently as today’s commercial silicon solar cells and has the potential for being much cheaper and easier to manufacture.
There’s just one problem: Of the four possible atomic configurations, or phases, this material can take, three are efficient but unstable at room temperature and in ordinary environments, and they quickly revert to the fourth phase, which is completely useless for solar applications.
Now scientists at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have found a novel solution: Simply place the useless version of the material in a diamond anvil cell and squeeze it at high temperature. This treatment nudges its atomic structure into an efficient configuration and keeps it that way, even at room temperature and in relatively moist air.
“This is the first study to use pressure to control this stability, and it really opens up a lot of possibilities,” said Yu Lin, a SLAC staff scientist and investigator with the Stanford Institute for Materials and Energy Sciences (SIMES).
“Now that we’ve found this optimal way to prepare the material,” she said, “there’s potential for scaling it up for industrial production, and for using this same approach to manipulate other perovskite phases.”
A search for stability
Perovskites get their name from a natural mineral with the same atomic structure. In this case the scientists studied a lead halide perovskite that’s a combination of iodine, lead and cesium.
One phase of this material, known as the yellow phase, does not have a true perovskite structure and can’t be used in solar cells. However, scientists discovered a while back that if you process it in certain ways, it changes to a black perovskite phase that’s extremely efficient at converting sunlight to electricity. “This has made it highly sought after and the focus of a lot of research,” said Stanford Professor and study co-author Wendy Mao.
Unfortunately, these black phases are also structurally unstable and tend to quickly slump back into the useless configuration. Plus, they only operate with high efficiency at high temperatures, Mao said, and researchers will have to overcome both of those problems before they can be used in practical devices.
There had been previous attempts to stabilize the black phases with chemistry, strain or temperature, but only in a moisture-free environment that doesn’t reflect the real-world conditions that solar cells operate in. This study combined both pressure and temperature in a more realistic working environment.
Pressure and heat do the trick
Working with colleagues in the Stanford research groups of Mao and Professor Hemamala Karunadasa, Lin and postdoctoral researcher Feng Ke designed a setup where yellow phase crystals were squeezed between the tips of diamonds in what’s known as a diamond anvil cell. With the pressure still on, the crystals were heated to 450 degrees Celsius and then cooled down.
Under the right combination of pressure and temperature, the crystals turned from yellow to black and stayed in the black phase after the pressure was released, the scientists said. They were resistant to deterioration from moist air and remained stable and efficient at room temperature for 10 to 30 days or more.
Examination with X-rays and other techniques confirmed the shift in the material’s crystal structure, and calculations by SIMES theorists Chunjing Jia and Thomas Devereaux provided insight into how the pressure changed the structure and preserved the black phase.
The pressure needed to turn the crystals black and keep them that way was roughly 1,000 to 6,000 times atmospheric pressure, Lin said – about a tenth of the pressures routinely used in the synthetic diamond industry. So one of the goals for further research will be to transfer what the researchers have learned from their diamond anvil cell experiments to industry and scale up the process to bring it within the realm of manufacturing.
The researchers described their results in Nature Communications.
Leave a Reply
Solar Energy
Scientists Probe Declining Earbud Battery Longevity
Scientists Probe Declining Earbud Battery Longevity
by Clarence Oxford
Los Angeles CA (SPX) Feb 05, 2025
Have you ever noticed how electronic devices, including wireless earbuds, seem to lose battery capacity faster the longer you use them? An international research team from The University of Texas at Austin set out to examine this familiar issue, known as battery degradation, by focusing on the earbuds that many people rely on daily. Through a series of x-ray, infrared, and other imaging approaches, the researchers investigated the hidden complexities behind these tiny devices and revealed why their battery life declines over time.
“This started with my personal headphones; I only wear the right one, and I found that after two years, the left earbud had a much longer battery life,” said Yijin Liu, an associate professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering, who led the new research published in Advanced Materials. “So, we decided to look into it and see what we could find.”
Their analysis showed that crucial earbud features – like the Bluetooth antenna, microphones, and circuits – compete with the battery in a very confined space, producing a microenvironment that is less than ideal. This situation results in a temperature gradient that damages the battery over time, with different sections of the cell experiencing variable temperatures.
Real-world factors also complicate matters. Frequent changes in climate, shifts in air quality, and a host of other environmental variables challenge the battery’s resilience. While cells are generally designed to endure harsh conditions, constant fluctuations can take their toll.
These discoveries highlight the importance of considering how batteries interact with devices such as phones, laptops, and even electric vehicles. Packaging solutions, strategic design decisions, and adaptations for user habits may all play a role in extending battery performance.
“Using devices differently changes how the battery behaves and performs,” said Guannan Qian, the first author of this paper and a postdoctoral researcher in Liu’s lab. “They could be exposed to different temperatures; one person has different charging habits than another; and every electric vehicle owner has their own driving style. This all matters.”
In conducting this study, Liu and his team worked closely with UT’s Fire Research Group, led by mechanical engineer Ofodike Ezekoye. They paired infrared imaging methods with their in-house x-ray technology at UT Austin and Sigray Inc. To expand their scope, they then teamed up with some of the world’s most advanced x-ray facilities.
Their collaborators included researchers from SLAC National Accelerator Laboratory’s Stanford Synchrotron Radiation Lightsource, Brookhaven National Laboratory’s National Synchrotron Light Source II, Argonne National Laboratory’s Advanced Photon Source, and the European Synchrotron Radiation Facility (ESRF) in France. These partnerships allowed them to observe battery behavior under more authentic operating conditions.
“Most of the time, in the lab, we’re looking at either pristine and stable conditions or extremes,” said Xiaojing Huang, a physicist at Brookhaven National Laboratory. “As we discover and develop new types of batteries, we must understand the differences between lab conditions and the unpredictability of the real world and react accordingly. X-ray imaging can offer valuable insights for this.”
Looking ahead, Liu says his team will continue analyzing battery performance in the settings people experience every day. They plan to expand their approach to larger batteries, such as those in smartphones, laptops, and electric vehicles, to learn more about their degradation patterns.
Research Report:In-device Battery Failure Analysis
Related Links
University of Texas at Austin
Powering The World in the 21st Century at Energy-Daily.com
Solar Energy
Quantum factors elevate plant energy transport efficiency
Quantum factors elevate plant energy transport efficiency
by Robert Schreiber
Munich, Germany (SPX) Feb 05, 2025
For countless engineers, converting sunlight into easily stored chemical energy stands as an enduring goal. Yet nature perfected this challenge billions of years ago. A recent study reveals that quantum mechanics, once thought to be limited to physics, is also essential for key biological processes.
Green plants and other photosynthetic organisms draw on quantum mechanical mechanisms to capture the sun’s energy. According to Prof. Jurgen Hauer: “When light is absorbed in a leaf, for example, the electronic excitation energy is distributed over several states of each excited chlorophyll molecule; this is called a superposition of excited states. It is the first stage of an almost loss-free energy transfer within and between the molecules and makes the efficient onward transport of solar energy possible. Quantum mechanics is therefore central to understanding the first steps of energy transfer and charge separation.”
Classical physics alone cannot completely describe how this phenomenon unfolds throughout green plants and in certain photosynthetic bacteria. Although the exact details remain only partly understood, Prof. Hauer and first author Erika Keil consider their new findings an important step toward uncovering how chlorophyll, the pigment behind leaf coloration, functions. Applying these insights to engineered photosynthesis devices could unlock unprecedented solar energy conversion efficiencies for both power production and photochemical applications.
In their investigation, the researchers focused on two portions of the light spectrum absorbed by chlorophyll: the low-energy Q band (yellow to red) and the high-energy B band (blue to green). In the Q region, two electronic states are quantum mechanically coupled, promoting virtually loss-free energy movement. The system subsequently relaxes via “cooling”, i.e. by releasing energy in the form of heat. These observations demonstrate that quantum mechanical processes can play a major role in shaping key biological functions.
Research Report:Reassessing the role and lifetime of Qx in the energy transfer dynamics of chlorophyll a
Related Links
Technical University of Munich
Darwin Today At TerraDaily.com
Solar Energy
HZB sets new efficiency record for CIGS perovskite tandem solar cells
HZB sets new efficiency record for CIGS perovskite tandem solar cells
by Robert Schreiber
Berlin, Germany (SPX) Feb 05, 2025
Researchers at Helmholtz Center Berlin for Materials and Energy (HZB) and Humboldt University Berlin have developed a CIGS-perovskite tandem solar cell that has set a new world record for efficiency, achieving 24.6%. The performance of the cell has been officially certified by the Fraunhofer Institute for Solar Energy Systems.
Thin-film solar cells, such as those based on copper, indium, gallium, and selenium (CIGS), require minimal material and energy to manufacture, making them an environmentally friendly alternative to conventional silicon-based solar cells. CIGS thin films can also be applied to flexible substrates, expanding their potential applications.
The new tandem solar cell developed by HZB and Humboldt University combines a CIGS bottom cell with a perovskite top cell. By optimizing the contact layers between these two components, the research team successfully increased efficiency to a record-breaking 24.6%. This milestone was confirmed by the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany.
This achievement was made possible through a collaborative effort among researchers. The top cell was developed by Thede Mehlhop, a master’s student at TU Berlin, under the supervision of Stefan Gall. The perovskite absorber layer was created in the joint laboratory of HZB and Humboldt University Berlin, while the CIGS sub-cell and contact layers were fabricated by HZB researcher Guillermo Farias Basulto. Additionally, the KOALA high-performance cluster system at HZB was used to deposit the perovskite and contact layers in a vacuum.
“At HZB, we have highly specialized laboratories and experts who are top performers in their fields. With this world record tandem cell, they have once again shown how fruitfully they work together,” said Prof. Rutger Schlatmann, spokesman for the Solar Energy Department at HZB.
HZB has a strong track record in achieving world records in solar cell efficiency, including past accomplishments in silicon-perovskite tandem cells and now in CIGS-perovskite tandem technology.
“We are confident that CIGS-perovskite tandem cells can achieve much higher efficiencies, probably more than 30%,” said Prof. Rutger Schlatmann.
Related Links
Helmholtz Center Berlin for Materials and Energy
All About Solar Energy at SolarDaily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
Pingback: A new modifier increases the efficiency of perovskite solar cells
Pingback: Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology
Pingback: Air Force awards UToledo $12.5 million to develop space-based solar energy sheets
Pingback: Ultra-fast electron measurement provides important findings for the solar industry