Solar Energy
Squeezing a rock-star material could make it stable enough for solar cells

Among the materials known as perovskites, one of the most exciting is a material that can convert sunlight to electricity as efficiently as today’s commercial silicon solar cells and has the potential for being much cheaper and easier to manufacture.
There’s just one problem: Of the four possible atomic configurations, or phases, this material can take, three are efficient but unstable at room temperature and in ordinary environments, and they quickly revert to the fourth phase, which is completely useless for solar applications.
Now scientists at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have found a novel solution: Simply place the useless version of the material in a diamond anvil cell and squeeze it at high temperature. This treatment nudges its atomic structure into an efficient configuration and keeps it that way, even at room temperature and in relatively moist air.
“This is the first study to use pressure to control this stability, and it really opens up a lot of possibilities,” said Yu Lin, a SLAC staff scientist and investigator with the Stanford Institute for Materials and Energy Sciences (SIMES).
“Now that we’ve found this optimal way to prepare the material,” she said, “there’s potential for scaling it up for industrial production, and for using this same approach to manipulate other perovskite phases.”
A search for stability
Perovskites get their name from a natural mineral with the same atomic structure. In this case the scientists studied a lead halide perovskite that’s a combination of iodine, lead and cesium.
One phase of this material, known as the yellow phase, does not have a true perovskite structure and can’t be used in solar cells. However, scientists discovered a while back that if you process it in certain ways, it changes to a black perovskite phase that’s extremely efficient at converting sunlight to electricity. “This has made it highly sought after and the focus of a lot of research,” said Stanford Professor and study co-author Wendy Mao.
Unfortunately, these black phases are also structurally unstable and tend to quickly slump back into the useless configuration. Plus, they only operate with high efficiency at high temperatures, Mao said, and researchers will have to overcome both of those problems before they can be used in practical devices.
There had been previous attempts to stabilize the black phases with chemistry, strain or temperature, but only in a moisture-free environment that doesn’t reflect the real-world conditions that solar cells operate in. This study combined both pressure and temperature in a more realistic working environment.
Pressure and heat do the trick
Working with colleagues in the Stanford research groups of Mao and Professor Hemamala Karunadasa, Lin and postdoctoral researcher Feng Ke designed a setup where yellow phase crystals were squeezed between the tips of diamonds in what’s known as a diamond anvil cell. With the pressure still on, the crystals were heated to 450 degrees Celsius and then cooled down.
Under the right combination of pressure and temperature, the crystals turned from yellow to black and stayed in the black phase after the pressure was released, the scientists said. They were resistant to deterioration from moist air and remained stable and efficient at room temperature for 10 to 30 days or more.
Examination with X-rays and other techniques confirmed the shift in the material’s crystal structure, and calculations by SIMES theorists Chunjing Jia and Thomas Devereaux provided insight into how the pressure changed the structure and preserved the black phase.
The pressure needed to turn the crystals black and keep them that way was roughly 1,000 to 6,000 times atmospheric pressure, Lin said – about a tenth of the pressures routinely used in the synthetic diamond industry. So one of the goals for further research will be to transfer what the researchers have learned from their diamond anvil cell experiments to industry and scale up the process to bring it within the realm of manufacturing.
The researchers described their results in Nature Communications.
Leave a Reply
Solar Energy
800-mn-euro battery factory to be built in Finland

800-mn-euro battery factory to be built in Finland
by AFP Staff Writers
Helsinki (AFP) Mar 20, 2025
A Chinese-Finnish company announced Thursday it would begin building a battery materials plant in Finland in April, the first of its kind in the Nordic country.
The plant will produce cathode active material, a key component in lithium-ion batteries used in electric vehicles and for energy storage, said Easpring Finland New Materials, a company co-owned by Finnish Minerals Group and Beijing Easpring Material Technology.
It said the investment was worth 800 million euros ($868 million).
The announcement came one week after a bankruptcy filing by Swedish battery maker Northvolt, which had planned to develop cathode production but dropped those plans to focus on battery cell production as it fought for survival.
Easpring Finland New Materials said commercial production was expected to begin in 2027.
The plant, to be located in Kotka in southeast Finland, will initially produce 60,000 tonnes of cathode active material annually.
At full production capacity, it could supply cathode material for the production of around 750,000 electric vehicles annually, the company said.
Matti Hietanen, the chief executive of Finnish Minerals Group, said the investment created an “entirely new kind of industry in Finland related to the production of lithium-ion batteries” and represented a European “spearhead project for the industry.”
The new plant will employ 270 people and an area of around 80 hectares had been reserved for its construction.
Related Links
Solar Energy
Nanocellulose infused with red onion extract shields solar cells from UV degradation

Nanocellulose infused with red onion extract shields solar cells from UV degradation
by Robert Schreiber
Berlin, Germany (SPX) Mar 20, 2025
Researchers at the University of Turku in Finland have developed a bio-based film that provides high-performance UV protection for solar cells, utilizing nanocellulose treated with red onion skin extract. This marks the first comparative study of how various bio-derived UV filters perform over time.
Solar cells, susceptible to damage from ultraviolet radiation, are typically shielded by petroleum-derived films such as polyvinyl fluoride (PVF) or polyethylene terephthalate (PET). In an effort to reduce reliance on fossil fuels, researchers are exploring sustainable alternatives like nanocellulose, a material made by refining cellulose into nanoscale fibers that can be customized for UV blocking capabilities.
The study, conducted in collaboration with Aalto University in Finland and Wageningen University in the Netherlands, revealed that nanocellulose films dyed with red onion extract blocked 99.9% of UV rays up to 400 nanometres. This performance surpassed that of commercial PET-based filters, which served as a benchmark in the research.
“Nanocellulose films treated with red onion dye are a promising option in applications where the protective material should be bio-based,” stated Doctoral Researcher Rustem Nizamov from the University of Turku.
Researchers evaluated four types of nanocellulose films enhanced with red onion extract, lignin, or iron ions, all known for their UV-filtering properties. Among them, the film incorporating red onion extract demonstrated the most effective UV shielding.
Effective UV protection must be balanced with the ability to transmit visible and near-infrared light, essential for solar energy conversion. While materials like lignin excel in UV absorption, their dark hue hinders transparency. In contrast, the red onion-based film achieved over 80% light transmission at wavelengths between 650 and 1,100 nanometres, maintaining this level over extended testing.
To simulate prolonged outdoor use, the films were exposed to artificial light for 1,000 hours, equating to roughly one year of natural sunlight in central Europe. Researchers tracked changes in the films and solar cells through digital imaging.
“The study emphasised the importance of long-term testing for UV filters, as the UV protection and light transmittance of the other bio-based filters changed significantly over time. For example, the films treated with iron ions had good initial transmittance which reduced after aging,” tells Nizamov.
Tests focused on dye-sensitised solar cells, which are particularly prone to UV-induced deterioration. The findings also have broader implications for other solar technologies like perovskite and organic photovoltaics, where bio-based UV filters could play a crucial role.
“These results are also relevant for the UV protection of other types of solar cells, including perovskite and organic photovoltaics, as well as any application where the use of a bio-based UV filter is paramount,” Nizamov says.
Looking ahead, the researchers aim to create biodegradable solar cells that could serve as power sources in applications such as food packaging sensors.
“The forest industry is interested in developing new high-grade products. In the field of electronics, these may also be components for solar cells,” noted Kati Miettunen, Professor in Materials Engineering.
The University of Turku’s Solar Energy Materials and Systems (SEMS) group is exploring ways to integrate solar technologies into broader energy systems.
This work was part of the BioEST project, supported by the Research Council of Finland.
Related Links
University of Turku
All About Solar Energy at SolarDaily.com
Solar Energy
Space Solar teams with MagDrive to boost in-orbit solar power systems

Space Solar teams with MagDrive to boost in-orbit solar power systems
by Sophie Jenkins
London, UK (SPX) Mar 20, 2025
Space Solar, a leading force in the field of space-based solar power (SBSP), has formed a strategic alliance with UK propulsion technology company Magdrive to enhance the deployment of large-scale infrastructure in orbit. The agreement, unveiled during the Farnborough International Space Show (FISS), is formalized under the Space Propulsion and Infrastructure Innovation Initiative (SPI3), reflecting a concerted push to realize space-driven clean energy.
SPI3 is designed to help fulfil the UK’s long-term goal of producing scalable, sustainable energy directly from space. By integrating Magdrive’s advanced propulsion systems, the initiative addresses the complex challenge of transporting, assembling, and managing substantial SBSP infrastructure in orbit.
Space Solar plans to launch its first 30-megawatt SBSP platform within five years, and success hinges on the ability to control and maintain massive solar satellite structures. Magdrive’s propulsion solutions are poised to support upcoming demonstration missions by enabling essential orbital maneuvers, satellite assembly, and shape optimization.
“Innovation in propulsion is essential to making large-scale space infrastructure a reality,” said Sam Adlen, Co-CEO of Space Solar. “Space Solar and Magdrive share a vision of advancing sustainable space operations that benefit earth, and this collaboration will pave the way for new propulsion solutions that will be indispensable for space-based solar power and other large scale space infrastructure.”
This partnership is also set to strengthen the UK’s space sector by stimulating high-value job creation and technological advancement. It highlights the country’s dedication to leading innovation at the intersection of clean energy and aerospace.
As part of SPI3, both companies will collaborate on refining propulsion specifications tailored to SBSP systems and identify additional applications for these technologies within the broader context of UK-led space initiatives. The cooperation is a key step towards expanding the UK’s footprint in the global space economy and unlocking emerging opportunities in space-based energy markets.
“We’re excited to work with Space Solar, they’re building the future of space energy and infrastructure on a scale never seen before. By working together we’ll be propelling the space industry towards enabling sustainable life on earth. Here’s to the new space age!” said Mark Stokes, CEO, MagDrive.
United by a vision to deliver scalable energy solutions from space, Space Solar and Magdrive’s agreement represents a pivotal move toward the commercialization of SBSP. As Space Solar progresses toward critical mission milestones, incorporating Magdrive’s propulsion technology will bring the reality of space-derived clean energy closer than ever.
Related Links
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
TOP SCEINCE7 months ago
Searching old stem cells that stay young forever
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news5 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
world news5 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
Pingback: A new modifier increases the efficiency of perovskite solar cells
Pingback: Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology
Pingback: Air Force awards UToledo $12.5 million to develop space-based solar energy sheets
Pingback: Ultra-fast electron measurement provides important findings for the solar industry