Solar Energy
Air Force awards UToledo $12.5 million to develop space-based solar energy sheets
The military is adding fuel to the momentum of physicists at The University of Toledo who are advancing new frontiers in thin-film, highly efficient, low-cost photovoltaic technology to ensure a clean energy future.
The U.S. Air Force awarded UToledo $12.5 million to develop photovoltaic energy sheets that would live in space and harvest solar energy to transmit power wirelessly to Earth-based receivers or to other orbital or aerial instrumentation, such as communications satellites.
UToledo physicists will develop flexible solar cell sheets, each roughly the size of a piece of paper, that can be assembled and interconnected into much larger structures.
Although UToledo’s focus does not include engineering the interconnected arrays, the vision is potentially massive: one space-based solar array could include tens of millions of sheets and extend to sizes as large as a square mile – that’s more than three quarters the size of UToledo Main Campus. One array at this size could generate about 800 megawatts of electrical power – just shy of the power produced by the Davis Besse power plant between Toledo and Cleveland.
“”With 37% stronger sunlight above the atmosphere than on a typical sunny day here on Earth’s surface, orbital solar arrays offer a critical opportunity to harness renewable energy, achieve sustainability goals and provide strategic power for a wide range of orbital and airborne technologies,” said Dr. Randall Ellingson, professor in the UToledo Department of Physics and Astronomy and member of the UToledo Wright Center for Photovoltaics Innovation and Commercialization who will lead the five-year project.
“”This $12.5 million award recognizes our own University of Toledo as a national leader in solar cell technologies and in photovoltaic energy research,” said Congresswoman Marcy Kaptur. “UToledo’s broad partnerships with industry, government and academia represent the best of us and will help cement our region as a player for generations to come in solar manufacturing, research and development.”
Building on UToledo’s more than 30-year history advancing solar technology to power the world using clean energy, the physicists will continue developing the material science and photovoltaic technologies that are highly efficient, lightweight and durable in an outer-space environment.
They’re building tandem solar cells – two different solar cells stacked on top of each other that more efficiently harvest the sun’s spectrum – on very thin, flexible supporting materials.
“”We have had great success accelerating the performance of solar cells and drawing record levels of power from the same amount of sunlight using the tandem technique with what are called perovskites,” Ellingson said.
Perovskites are compound materials with a special crystal structure formed through chemistry.
The team will sandwich a variety of combinations of solar cells, including perovskites, silicon, cadmium telluride and copper indium gallium selenide, to raise the ceiling on what is achievable.
At the same time, the team will explore lightweight, flexible supporting material to create the large solar cell sheets. Those materials also need to be resilient, ultra-thin and tolerant to high and low temperatures. Semitransparent and very thin ceramic, plastics and glass are under consideration.
“Professor Ellingson and his team have demonstrated their ability to provide the Air Force with outstanding results over the years and the University is pleased that Representative Kaptur prioritizes projects that both advance the nation’s leadership in cutting-edge solar energy technology and provide the Department of Defense with the highest level of support from University research,” said Dr. Frank Calzonetti, UToledo vice president of research.
In 2019 the U.S. Air Force awarded Ellingson’s team $7.4 million to develop solar technology to power space vehicles using sunlight.
“”The Air Force has demanding specifications for its spaced-based power systems, and the advances being made in thin-film photovoltaics at UToledo coupled with our new photovoltaic sheets concept provide an avenue to meet them,” said Dr. Michael Heben, UToledo professor of physics and McMaster endowed chair. “The faculty and staff at UToledo’s Wright Center for Photovoltaics are proud to receive this award and excited about the challenge.”
In 2019 the U.S. Department of Energy awarded UToledo $4.5 million to develop the next-generation solar panel by bringing a new, ultra-high efficiency material to the consumer market. As part of the project, Dr. Yanfa Yan, UToledo professor of physics, is working with the National Renewable Energy Laboratory and First Solar to develop industrially relevant methods for both the fabrication and performance prediction of low-cost, efficient and stable perovskite thin-film PV modules.
Also in 2019 UToledo was part of a $3.9 million award led by Colorado State University to collaborate with the National Renewable Energy Laboratory, First Solar and the University of Illinois at Chicago on a U.S. Department of Energy-funded project to improve the voltage and power produced by cadmium-telluride-based solar cells.
UToledo’s Wright Center for Photovoltaics Innovation and Commercialization is a founding member of an organization called the U.S. Manufacturing of Advanced Perovskites Consortium, which is focused on moving a breakthrough new technology out of the lab and into the marketplace to enhance economic and national security. Partners include the U.S. Department of Energy’s National Renewable Energy Laboratory in Golden, Colo.; Washington Clean Energy Testbeds at the University of Washington; University of North Carolina at Chapel Hill; and six domestic companies that are working to commercialize the technology.
The University created the Wright Center for Photovoltaics Innovation and Commercialization in January 2007 with an $18.6 million award from the Ohio Department of Development in response to a proposal led by Dr. Robert Collins, Distinguished University Professor and NEG Endowed Chair of Silicate and Materials Science. Matching contributions of $30 million from federal agencies, universities and industrial partners helped to launch the center, which works to strengthen the photovoltaics and manufacturing base in Ohio through materials and design innovation.
“Solar electricity now competes economically with fossil-fueled and nuclear electricity while avoiding significant atmospheric carbon emissions which drive climate change,” Ellingson said.
“UToledo has assisted in driving down the cost of solar,” Heben said. “Over the past 15 years the cost of solar has been reduced by a factor of 10, while the amount of solar annually deployed has grown by a factor of 100, currently amounting to about 2% of the U.S. electricity supply. Importantly, the transition to clean solar electricity that is occurring also is creating tremendous new job growth opportunities in many parts of our economy.”
Leave a Reply
Solar Energy
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency
by Simon Mansfield
Sydney, Australia (SPX) Dec 20, 2024
A team led by Prof. Meng Li from Henan University’s School of Nanoscience and Materials Engineering has unveiled an innovative approach to overcoming stability and efficiency challenges in tin-lead (Sn-Pb) perovskite solar cells. The researchers’ work focuses on optimizing the buried hole-selective interface using a specially designed self-assembled material, offering major implications for single-junction and tandem solar cell technologies.
Tin-lead perovskites are valued for their narrow bandgap properties, which position them as key materials for producing high-efficiency solar cells. However, energy level mismatches and degradation at the buried interface have constrained both their performance and long-term stability. Addressing these issues, Prof. Meng’s team designed a boronic acid-anchored hole-selective contact material, 4-(9H-carbazole-9-yl)phenylboronic acid (4PBA).
Compared to conventional materials, 4PBA demonstrated superior stability and compatibility at the substrate surface. Its high adsorption energy of -5.24 eV and significant molecular dipole moment (4.524 D) improved energy level alignment between the substrate and perovskite layer, facilitating efficient charge extraction. Additionally, the interface engineered using 4PBA improved perovskite crystallization and substrate contact, reducing defects and non-radiative recombination.
These advancements enabled Sn-Pb perovskite solar cells incorporating 4PBA to achieve a power conversion efficiency (PCE) of 23.45%. The material’s reduced corrosiveness also mitigated the degradation effects typically caused by PEDOT:PSS, a widely used hole-transport material, enhancing chemical stability and storage durability. The cells retained 93.5% of their initial efficiency after 2,000 hours of shelf storage.
“This approach offers a practical path to enhancing both the efficiency and stability of Sn-Pb perovskite solar cells, addressing energy level mismatches and interfacial stability concerns,” the research team commented.
The findings provide a foundation for advancing efficient and stable Sn-Pb perovskite solar cells and highlight the importance of interface engineering in next-generation photovoltaic technologies.
Research Report:Buried Hole-Selective Interface Engineering for High-Efficiency Tin-Lead Perovskite Solar Cells with Enhanced Interfacial Chemical Stability
Related Links
Solar Energy
New solar material advances green hydrogen production
New solar material advances green hydrogen production
by Simon Mansfield
Sydney, Australia (SPX) Dec 20, 2024
Researchers in nano-scale chemistry have made a significant stride in advancing the sustainable and efficient production of hydrogen from water using solar energy.
A collaborative international study led by Flinders University, with partners in South Australia, the US, and Germany, has identified a novel solar cell process that could play a crucial role in photocatalytic water splitting for green hydrogen production.
The research introduces a new class of kinetically stable ‘core and shell Sn(II)-perovskite’ oxide solar material. Paired with a catalyst developed by US researchers under Professor Paul Maggard, this material shows potential as a catalyst for the essential oxygen evolution reaction, a key step in generating pollution-free hydrogen energy.
The findings, published in The Journal of Physical Chemistry C, offer new insights into the development of carbon-free hydrogen technologies, leveraging renewable and greenhouse-gas-free power sources for high-performing and cost-effective electrolysis processes.
“This latest study is an important step forwards in understanding how these tin compounds can be stabilised and effective in water,” said Professor Gunther Andersson, lead author from the Flinders Institute for Nanoscale Science and Technology.
Professor Paul Maggard, from Baylor University, added, “Our reported material points to a novel chemical strategy for absorbing the broad energy range of sunlight and using it to drive fuel-producing reactions at its surfaces.”
Tin and oxygen compounds like those used in the study are already applied in diverse fields such as catalysis, diagnostic imaging, and therapeutic drugs. However, Sn(II) compounds are typically reactive with water and dioxygen, limiting their technological potential.
Global solar photovoltaic research continues to focus on developing cost-effective, high-performance perovskite-based systems as alternatives to conventional silicon and other existing technologies.
Hydrogen, often touted as a clean fuel, can be produced through various processes, including electrolysis powered by renewable energy, thermochemical water splitting using concentrated solar power, or waste heat from nuclear reactors. While fossil fuels and biomass can also generate hydrogen, the environmental and energy efficiency depends largely on the production method.
Solar-driven hydrogen production, which uses light to initiate the process, is emerging as a promising alternative for industrial-scale hydrogen generation.
This study builds on earlier research led by Professor Maggard, initially at North Carolina State University and now at Baylor University, and includes contributions from University of Adelaide experts such as Professor Greg Metha and collaborators from Universitat Munster in Germany. Professor Metha’s work explores the photocatalytic activity of metal clusters on oxide surfaces for reactor technologies.
Research Report:Chemical and Valence Electron Structure of the Core and Shell of Sn(II)-Perovskite Oxide Nanoshells
Related Links
Flinders University
All About Solar Energy at SolarDaily.com
Solar Energy
University of Houston scientists solving meteorological mysteries on Mars
University of Houston scientists solving meteorological mysteries on Mars
by Bryan Luhn for UH News
Houston TX (SPX) Dec 20, 2024
A groundbreaking achievement by scientists at the University of Houston is changing our understanding of climate and weather on Mars and providing critical insights into Earth’s atmospheric processes as well.
The study, led by Larry Guan, a graduate student in the Department of Physics at UH’s College of Natural Sciences and Mathematics, under the guidance of his advisors, Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and several world-renowned planetary scientists, generated the first-ever meridional profile of Mars’ radiant energy budget, or REB, which represents the balance or imbalance between absorbed solar energy and emitted thermal energy across the latitudes. On a global scale, an energy surplus leads to global warming, while a deficit results in global cooling. Furthermore, the meridional profile of Mars’ REB fundamentally influences weather and climate patterns on the red planet.
The findings are in a new paper just published in AGU Advances and will be featured in AGU’s prestigious science magazine EOS.
“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan said. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”
The profile, based on long-term observations from orbiting spacecraft, offers a detailed comparison of Mars’ REB to that of Earth, uncovering striking differences in the way each planet receives and radiates energy. While Earth exhibits an energy surplus in the tropics and a deficit in the polar regions, Mars displays the opposite configuration.
“On Earth, the tropical energy surplus drives warming and upward atmospheric motion, while the polar energy deficit causes cooling and downward atmospheric motion,” Jiang explained. “These atmospheric motions significantly influence weather and climate on our home planet. However, on Mars, we observe a polar energy surplus and a tropical energy deficit.”
That surplus, Guan says, is especially pronounced in Mars’ southern hemisphere during spring, playing a critical role in driving the planet’s atmospheric circulation and triggering global dust storms, the most prominent feature of Martian weather. These massive storms, which can envelop the entire planet, significantly alter the distribution of energy, providing a dynamic element that affects Mars’ weather patterns and climate.
“The interaction between dust storms and the REB, as well as with polar ice dynamics, brings to light the complex feedback processes that likely shape Martian weather patterns and long-term climate stability,” Guan said.
Earth’s global-scale energy imbalance has been recently discovered, which significantly contributes to global warming at a magnitude comparable to that caused by increasing greenhouse gases. Mars presents a distinct environment due to its thinner atmosphere and lack of anthropogenic effects. The research team is now examining potential long-term energy imbalances on Mars and their implications for the planet’s climate evolution.
“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li said. “This research not only deepens our knowledge of the red planet but also provides critical insights into planetary atmospheric processes.”
Research Report:Distinct Energy Budgets of Mars and Earth
Related Links
University of Houston
Mars News and Information at MarsDaily.com
Lunar Dreams and more
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
Pingback: Increasing battery and fuel cell power with quantum computing |