Connect with us

Solar Energy

Air Force awards UToledo $12.5 million to develop space-based solar energy sheets

Published

on

Air Force awards UToledo .5 million to develop space-based solar energy sheets

The military is adding fuel to the momentum of physicists at The University of Toledo who are advancing new frontiers in thin-film, highly efficient, low-cost photovoltaic technology to ensure a clean energy future.

The U.S. Air Force awarded UToledo $12.5 million to develop photovoltaic energy sheets that would live in space and harvest solar energy to transmit power wirelessly to Earth-based receivers or to other orbital or aerial instrumentation, such as communications satellites.

UToledo physicists will develop flexible solar cell sheets, each roughly the size of a piece of paper, that can be assembled and interconnected into much larger structures.

Although UToledo’s focus does not include engineering the interconnected arrays, the vision is potentially massive: one space-based solar array could include tens of millions of sheets and extend to sizes as large as a square mile – that’s more than three quarters the size of UToledo Main Campus. One array at this size could generate about 800 megawatts of electrical power – just shy of the power produced by the Davis Besse power plant between Toledo and Cleveland.

“”With 37% stronger sunlight above the atmosphere than on a typical sunny day here on Earth’s surface, orbital solar arrays offer a critical opportunity to harness renewable energy, achieve sustainability goals and provide strategic power for a wide range of orbital and airborne technologies,” said Dr. Randall Ellingson, professor in the UToledo Department of Physics and Astronomy and member of the UToledo Wright Center for Photovoltaics Innovation and Commercialization who will lead the five-year project.

“”This $12.5 million award recognizes our own University of Toledo as a national leader in solar cell technologies and in photovoltaic energy research,” said Congresswoman Marcy Kaptur. “UToledo’s broad partnerships with industry, government and academia represent the best of us and will help cement our region as a player for generations to come in solar manufacturing, research and development.”

Building on UToledo’s more than 30-year history advancing solar technology to power the world using clean energy, the physicists will continue developing the material science and photovoltaic technologies that are highly efficient, lightweight and durable in an outer-space environment.

They’re building tandem solar cells – two different solar cells stacked on top of each other that more efficiently harvest the sun’s spectrum – on very thin, flexible supporting materials.

“”We have had great success accelerating the performance of solar cells and drawing record levels of power from the same amount of sunlight using the tandem technique with what are called perovskites,” Ellingson said.

Perovskites are compound materials with a special crystal structure formed through chemistry.

The team will sandwich a variety of combinations of solar cells, including perovskites, silicon, cadmium telluride and copper indium gallium selenide, to raise the ceiling on what is achievable.

At the same time, the team will explore lightweight, flexible supporting material to create the large solar cell sheets. Those materials also need to be resilient, ultra-thin and tolerant to high and low temperatures. Semitransparent and very thin ceramic, plastics and glass are under consideration.

“Professor Ellingson and his team have demonstrated their ability to provide the Air Force with outstanding results over the years and the University is pleased that Representative Kaptur prioritizes projects that both advance the nation’s leadership in cutting-edge solar energy technology and provide the Department of Defense with the highest level of support from University research,” said Dr. Frank Calzonetti, UToledo vice president of research.

In 2019 the U.S. Air Force awarded Ellingson’s team $7.4 million to develop solar technology to power space vehicles using sunlight.

“”The Air Force has demanding specifications for its spaced-based power systems, and the advances being made in thin-film photovoltaics at UToledo coupled with our new photovoltaic sheets concept provide an avenue to meet them,” said Dr. Michael Heben, UToledo professor of physics and McMaster endowed chair. “The faculty and staff at UToledo’s Wright Center for Photovoltaics are proud to receive this award and excited about the challenge.”

In 2019 the U.S. Department of Energy awarded UToledo $4.5 million to develop the next-generation solar panel by bringing a new, ultra-high efficiency material to the consumer market. As part of the project, Dr. Yanfa Yan, UToledo professor of physics, is working with the National Renewable Energy Laboratory and First Solar to develop industrially relevant methods for both the fabrication and performance prediction of low-cost, efficient and stable perovskite thin-film PV modules.

Also in 2019 UToledo was part of a $3.9 million award led by Colorado State University to collaborate with the National Renewable Energy Laboratory, First Solar and the University of Illinois at Chicago on a U.S. Department of Energy-funded project to improve the voltage and power produced by cadmium-telluride-based solar cells.

UToledo’s Wright Center for Photovoltaics Innovation and Commercialization is a founding member of an organization called the U.S. Manufacturing of Advanced Perovskites Consortium, which is focused on moving a breakthrough new technology out of the lab and into the marketplace to enhance economic and national security. Partners include the U.S. Department of Energy’s National Renewable Energy Laboratory in Golden, Colo.; Washington Clean Energy Testbeds at the University of Washington; University of North Carolina at Chapel Hill; and six domestic companies that are working to commercialize the technology.

The University created the Wright Center for Photovoltaics Innovation and Commercialization in January 2007 with an $18.6 million award from the Ohio Department of Development in response to a proposal led by Dr. Robert Collins, Distinguished University Professor and NEG Endowed Chair of Silicate and Materials Science. Matching contributions of $30 million from federal agencies, universities and industrial partners helped to launch the center, which works to strengthen the photovoltaics and manufacturing base in Ohio through materials and design innovation.

“Solar electricity now competes economically with fossil-fueled and nuclear electricity while avoiding significant atmospheric carbon emissions which drive climate change,” Ellingson said.

“UToledo has assisted in driving down the cost of solar,” Heben said. “Over the past 15 years the cost of solar has been reduced by a factor of 10, while the amount of solar annually deployed has grown by a factor of 100, currently amounting to about 2% of the U.S. electricity supply. Importantly, the transition to clean solar electricity that is occurring also is creating tremendous new job growth opportunities in many parts of our economy.”

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Increasing battery and fuel cell power with quantum computing |

Leave a Reply

Solar Energy

So you want to build a solar or wind farm? Here’s how to decide where

Published

on

By

So you want to build a solar or wind farm? Here’s how to decide where





So you want to build a solar or wind farm? Here’s how to decide where

by David L. Chandler | MIT News

Boston MA (SPX) Dec 08, 2024






Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.

The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.



The study, appearing in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.



Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”



Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”



Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.



To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions – New England, Texas, and California – analyzing up to 138,271 possible siting locations simultaneously for a single region.



By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”



That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”



In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.



These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.



The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.



Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”



One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.



In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”



The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”



Research Report:Decarbonized energy system planning with high-resolution spatial representation of renewables lowers cost


Related Links

Department of Civil and Environmental Engineering

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

China to send batteries to Europe via route bypassing Russia: Kazakhstan

Published

on

By

China to send batteries to Europe via route bypassing Russia: Kazakhstan





China to send batteries to Europe via route bypassing Russia: Kazakhstan

by AFP Staff Writers

Almaty, Kazakhstan (AFP) Dec 6, 2024






China will soon send lithium-ion batteries to Europe via Kazakhstan on a trade route that bypasses sanctions-hit Russia, the Central Asian country said Friday.

Trade via the Trans-Caspian International Transport Route (TITR) that crosses the Caspian Sea has jumped since Moscow invaded Ukraine in 2022, as European countries seek to avoid imports that transit Russia.

Kazakhstan has agreed to “jointly develop” the route with Beijing, launching a “trial run for the transportation of lithium-ion batteries from China” in December, Kazakhstan’s transport ministry said Friday.

China is the world’s largest producer of lithium-ion batteries and among the top miners of the metal, which is used to power phones and electric vehicles.

“The volume of transportation from China along the TITR (in the direction of China to Europe) has exceeded the equivalent of 27,000 20-foot containers, which is 25 times more than in the same period last year,” the ministry said.

The ministry also noted an increase in goods transported between China and Kazakhstan, with both sides discussing the idea of opening new transport routes across their shared border.

Europe has looked to Central Asia as a key trading partner since Moscow launched its Ukraine offensive, triggering a barrage of Western sanctions on Moscow.

Beijing has also invested billions of dollars in building rail and road routes that traverse Central Asia, as it seeks to turn the region into a trading hub for its “New Silk Road”.

Construction is underway to build a China-Kyrgyzstan-Uzbekistan railroad that will shorten transport times between China and Europe.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Meta pushes zero-carbon energy strategy with solar deal

Published

on

By

Meta pushes zero-carbon energy strategy with solar deal





Meta pushes zero-carbon energy strategy with solar deal

by AFP Staff Writers

Washington (AFP) Dec 5, 2024






Meta has signed contracts with renewable energy firm Invenergy for 760 megawatts of solar power capacity, the companies said on Thursday.

The deal is part of the Facebook-owner’s search for cleaner power sources, including nuclear, as its power needs expand, namely because of the adoption of artificial intelligence.

The project involves solar facilities in four US states and pushes Meta’s total renewable energy agreements with Chicago-based Invenergy beyond 1 gigawatt. Operations are expected to begin between 2024 and 2027.

The electricity will supply local power grids while Meta receives clean energy credits, supporting its goal of powering all operations with renewable energy.

“Energy demand is soaring,” said Invenergy Executive Vice President Ted Romaine, noting the projects will create jobs and generate “millions in local economic benefits.”

Meta’s Head of Global Energy Urvi Parekh said the agreement helps match the company’s growing power needs with clean energy sources.

Invenergy, the largest privately held clean energy developer in the US, said it has developed over 32,000 megawatts of renewable energy projects across the Americas, Europe, and Asia.

Meta announced plans on Tuesday to seek proposals for 1-4 gigawatts of new nuclear generation capacity in the US, targeting operations in the early 2030s.

The nuclear initiative aims to support Meta’s growing artificial intelligence operations and data centers while contributing to grid reliability.

Building AI consumes a tremendous amount of electricity because it involves intensive computing operations. It also emits a lot of CO2 when using power generated by coal or natural gas.

As tech companies seek energy sources to meet these demands while maintaining their zero-carbon emission commitments, the chase for nuclear, wind and solar power has intensified.

Meta’s push into nuclear power follows similar initiatives by Microsoft and Amazon that are also scrambling to find enough power to needs of their AI ambitions, while also meeting zero-carbon targets.

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending