Connect with us

Solar Energy

Power when the sun doesn’t shine

Published

on

Power when the sun doesn’t shine


Power when the sun doesn’t shine

by Deborah Halber | MIT Energy Initiative

Boston MA (SPX) Mar 04, 2024






In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.

Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.



Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems – essentially large batteries – is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”



In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.



“There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.



Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.



Bridging gaps

The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.



During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.



Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.



The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.



To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy – one-tenth the cost of lithium-ion battery storage.



But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?



“One big ball of iron”

That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.



How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.



Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.



Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.



Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.



“Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”



Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”



Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.



The right place at the right time

The modules don’t look or act like anything utilities have contracted for before.



That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”



Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.



Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.



Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.



“They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.” Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge.



In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.



The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.



“This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”



Research Report:This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative.


Related Links

MIT Energy Initiative

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

3D-printed microstructure forest enhances solar steam desalination

Published

on

By

3D-printed microstructure forest enhances solar steam desalination


3D-printed microstructure forest enhances solar steam desalination

by Clarence Oxford

Los Angeles CA (SPX) Jul 24, 2024







To address the global freshwater scarcity issue, researchers in Singapore have developed advanced solar steam generators (SSGs) for seawater desalination. This method, powered by renewable energy, mimics the natural water cycle by using solar energy to evaporate and purify water, offering a potentially cost-effective solution compared to traditional, energy-intensive desalination techniques. However, current SSG technologies face limitations due to the complexity of fabricating designs that maximize surface area for optimal water evaporation.

Drawing inspiration from nature, the team utilized 3D printing to create innovative SSGs. Their findings, published in Applied Physics Reviews, highlight a novel technique for manufacturing efficient SSGs and introduce a groundbreaking method for printing functional nanocomposites using multi-jet fusion (MJF).



“We created SSGs with exceptional photothermal performance and self-cleaning properties,” said Kun Zhou, a professor of mechanical engineering at Nanyang Technological University. “Using a treelike porous structure significantly enhances water evaporation rates and ensures continuous operation by preventing salt accumulation – its performance remains relatively stable even after prolonged testing.”



The technology works by converting light to thermal energy, where SSGs absorb solar energy and convert it to heat to evaporate water. The porous structure of the SSGs aids in self-cleaning by removing accumulated salt, ensuring sustained desalination performance.



“By using an effective photothermal fusing agent, MJF printing technology can rapidly create parts with intricate designs,” Zhou added. “To improve the photothermal conversion efficiency of fusing agents and printed parts, we developed a novel type of fusing agent derived from metal-organic frameworks.”



The SSGs feature miniature tree-shaped microstructures that mimic plant transpiration, forming an efficient, heat-distributing forest.



“Our bioinspired design increases the surface area of the SSG,” Zhou explained. “Using a treelike design increases the surface area of the SSG, which enhances the water transport and boosts evaporation efficiency.”



In both simulated environments and field trials, the SSGs exhibited a high rate of water evaporation. The desalinated water consistently met drinking water standards, even after extended testing.



“This demonstrates the practicality and efficiency of our approach,” Zhou said. “And it can be quickly and easily mass-produced via MJF commercial printers.”



The team’s work shows significant potential for tackling freshwater scarcity.



“Our SSGs can be used in regions with limited access to freshwater to provide a sustainable and efficient desalination solution,” said Zhou. “Beyond desalination, it can be adapted for other applications that require efficient solar energy conversion and water purification.”



Research Report:3D printing of bio-inspired porous polymeric solar steam generators for efficient and sustainable desalination


Related Links

American Institute of Physics

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Renewables overproduction turns electricity prices negative

Published

on

By

Renewables overproduction turns electricity prices negative


Renewables overproduction turns electricity prices negative

By Nathalie Alonso and Catherine Hours

Paris (AFP) July 24, 2024






With the proliferation of solar panels and wind turbines an unusual phenomenon is becoming more and more frequent: wholesale electricity prices turn negative.

While that may brighten the mood of consumers whose power bills have surged in recent years, it could undermine the further development of renewables, a key element in the fight against global warming.

The increasingly frequent phenomenon is “extremely problematic” for the wind and solar sector, said Mattias Vandenbulcke, strategy director of the renewables industry group France Renouvelables.

“It allows some to have harmful, even dangerous rhetoric which says ‘renewables are useless’,” Vandenbulcke said.

In southern Australia, wholesale electricity prices have been negative some 20 percent of the time since last year, according to the International Energy Agency.

The share of negatively priced hours in southern California was above 20 percent in the first half of the year, more than triple from the same period in 2023, the IEA said.

In the first six months of the year in France, there were negative prices around five percent of the time, beating the record set last year, according to the electricity grid operator RTE.

In Switzerland the price tumbled as far as -400 euros (-$436) per megawatt hour on July 14. The lowest prices are usually recorded around midday during the summer when solar production is at its peak.

– ‘A warning signal’ –

The trend has been accelerating for the past three years as demand in Europe has unexpectedly dropped since the Covid pandemic and the war in Ukraine.

Prices turn negative on the spot wholesale electricity market when production is strong while demand is weak.

Around a fifth of the total is traded on this market, where electricity is bought for the following day.

Negative prices help reduce the bills of consumers, said Rebecca Aron, head of electricity markets at French renewables firm Valorem, but the impact is delayed and difficult to discern among the other factors that send prices higher and lower.

Large, industrial consumers that can shift production to times when prices are negative and buy on wholesale markets can reap the biggest rewards.

Negative prices are “a warning signal that there is way too much production on the electrical grid”, said energy analyst Nicolas Goldberg at Colombus Consulting.

Electricity grids need to be kept constantly in balance. Too much can lead to the electricity to increase in frequency beyond norms for some equipment. Too little can lead to some or all customers losing power.

There are currently few options to stock surplus electricity production so producers have to reduce output.

Many renewable producers stop their output when prices are set to turn negative. It takes one minute to stop output at a solar park, two to three minutes for a wind turbine.

But not all stop their production.

– Tripling renewables –

“Renewable energy can be controlled, but depending on production contracts, there might not necessarily be an incentive to stop,” said Mathieu Pierzo at French grid operator RTE, which has the responsibility for balancing the electricity load.

Some producers are paid a fixed price under their contract or are compensated by the state if prices fall below a certain level.

Fossil fuel and nuclear power plants can adjust their production to some extent, but halting and restarting output is costly.

In the future, solar and wind will also have to “participate more in balancing the electricity system”, Pierzo said.

Solar and wind production is set to rise further as nations agreed at the COP28 climate conference last year to triple renewable energy capacity by 2030 as part of efforts to limit warming to 1.5 degrees Celsius compared with pre-industrial levels.

“Rising frequency of negative prices sends an urgent signal that greater flexibility of supply and demand is needed,” the Paris-based IEA warned last week.

“The appropriate regulatory frameworks and market designs will be important to allow for an uptake in flexibility solutions such as demand response and storage,” it said.

nal-cho/abb/rl-lth/

FOSSIL GROUP

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

NREL explores long-term strategies for sustainable perovskite solar panels

Published

on

By

NREL explores long-term strategies for sustainable perovskite solar panels


NREL explores long-term strategies for sustainable perovskite solar panels

by Clarence Oxford

Los Angeles CA (SPX) Jul 24, 2024






Researchers at the National Renewable Energy Laboratory (NREL) are examining the future of perovskite solar panels, focusing on scaling, deploying, and designing panels to be recyclable.

Perovskite solar panels could play a key role in global efforts to reduce greenhouse gas emissions. With the technology still in its developmental stages, researchers are emphasizing the importance of designing these panels to minimize environmental impact.



“When you have a technology in its very early stages, you have the ability to design it better. It’s a cleaner slate,” said Joey Luther, a senior research fellow at the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) and coauthor of the newly published article in the journal Nature Materials. “Pushing perovskite PV toward enhanced sustainability makes more sense at this stage. We’re thinking about how we can make sure we have a sustainable product now rather than dealing with sustainability issues toward the end of its practical life.”



The article highlights the PV research community’s influential position to prioritize remanufacturing, recycling, and reliability efforts, aiming to make perovskite PV one of the most sustainable energy sources available.



“Perovskites could unlock the next evolution of high-efficiency PV, and it is our responsibility to assure they are manufactured, used, and recycled sustainably,” said the lead author of the study, Kevin Prince, a former graduate researcher at NREL who now researches perovskites at Helmholtz Zentrum Berlin in Germany.



While silicon solar panels dominate the industry and cadmium telluride (CdTe) panels have established recycling programs, perovskites are at a critical point where sustainability issues can be addressed from the start.



The most effective circular economy begins at the design stage, considering materials sourcing, product lifetime, and end-of-life management. Researchers suggest assessing environmental impacts by looking at carbon emissions during production, embodied energy, sustainable material sourcing, and module circularity.



The journal article identifies critical sustainability concerns for each component of a perovskite solar panel. For instance, lead can be diluted with metals like tin to reduce lead content, though this may affect PV efficiency and durability. Expensive precious metals such as silver and gold could be replaced with cheaper alternatives like aluminum, copper, or nickel. Fluorine-tin oxide is recommended over the scarcer indium-tin oxide for front electrodes.



“We want to have the lowest amount of embodied energy in the fabrication,” Luther said. “We want to have the lowest amount of emissions in the fabrication. At this stage, now is the chance to look at those components. I don’t think we have to change anything. It’s more a matter of what decisions should be made, and these arguments should certainly be discussed.”



The authors discuss various ways to improve the circularity of perovskite panels. Remanufacturing involves reusing parts from old modules to make new ones, while recycling converts waste materials into raw materials for reuse. Attention is needed for the specialized glass used in perovskite modules, which is crucial for structural support and protection while allowing maximum sunlight penetration. Establishing a recycling pathway for this glass will be essential as PV deployment increases.



Silvana Ovaitt, a PV researcher and coauthor of the paper, noted that cleaner electricity grids will lead to cleaner manufacturing processes, further reducing emissions.



“Another concern is the transportation of the final modules and the raw glass because those are the heaviest items,” Ovaitt said. “Local manufacturing will be a great way to reduce those carbon impacts.”



The researchers explain that increasing the durability of PV modules, thereby extending their useful life, is a more effective approach to reducing net energy, energy payback, and carbon emissions than designing for circularity alone. A longer lifespan means panels won’t need to be recycled as often.



“Ultimately, we want to make them as durable as possible,” Luther said. “But we also want to consider the aspects of whenever that time does come. We want to be deliberate about how to take them apart and to reuse the critical components.”



Research Report:Sustainability pathways for perovskite photovoltaics


Related Links

National Renewable Energy Laboratory

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending