Connect with us

Solar Energy

Radiative cooling and solar heating from one system, no electricity needed

Published

on

Radiative cooling and solar heating from one system, no electricity needed

Passive cooling, like the shade a tree provides, has been around forever. Recently, researchers have been exploring how to turbo charge a passive cooling technique – known as radiative or sky cooling – with sun-blocking, nanomaterials that emit heat away from building rooftops. While progress has been made, this eco-friendly technology isn’t commonplace because researchers have struggled to maximize the materials’ cooling capabilities.

New research led by University at Buffalo engineers makes significant progress in this area.

A study published Feb. 8 in the journal Cell Reports Physical Science describes a uniquely designed radiative cooling system that:

+ Lowered the temperature inside a test system in an outdoor environment under direct sunlight by more than 12 degrees Celsius (22 degrees Fahrenheit).

+ Lowered the temperature of the test box in a laboratory, meant to simulate the night, by more than 14 degrees Celsius (25 degrees Fahrenheit).

+ Simultaneously captured enough solar power that can be used to heat water to about 60 degrees Celsius (140 degrees Fahrenheit).

While the system tested was only 70 centimeters (27.5 inches) squared, it could eventually be scaled up to cover rooftops, engineers say, with the goal of reducing society’s reliance on fossil fuels for cooling and heating. It also could aid communities with limited access to electricity.

“There is a great need for heating and cooling in our daily life, especially cooling in the warming world,” says the study’s lead author Qiaoqiang Gan, PhD, professor of electrical engineering in the UB School of Engineering and Applied Sciences.

The research team includes Zongfu Yu, PhD, University of Wisconsin-Madison; Boon Ooi, PhD, King Abdullah University of Science and Technology (KAUST) in Saudi Arabia; and members of Gan’s lab at UB, and Ooi’s lab at KAUST.

System design and materials key to success

The system consists of what are essentially two mirrors, made of 10 extremely thin layers of silver and silicon dioxide, which are placed in a V-shape.

These mirrors absorb incoming sunlight, turning solar power from visible and near-infrared waves into heat. The mirrors also reflect mid-infrared waves from an “emitter” (a vertical box in between the two mirrors), which then bounces the heat they carry into the sky.

“”Since the thermal emission from both surfaces of the central thermal emitter is reflected to the sky, the local cooling power density on this emitter is doubled, resulting in a record high temperature reduction,” says Gan.

“”Most radiative cooling systems scatter the solar energy, which limits the system’s cooling capabilities,” Gan says. “Even with a perfect spectral selection, the upper limit for the cooling power with an ambient temperature of 25 degrees Celsius is about 160 watts per square meter. In contrast, the solar energy of about 1000 watts per square meter on top of those systems was simply wasted.””

Spinoff company aims to commercialize technology

Gan co-founded a spinoff company, Sunny Clean Water LLC, which is seeking partners to commercialize this technology.

“One of the key innovations of our system is the ability to separate and retain the solar heating and radiative cooling at different components in a single system,” says co-first author Lyu Zhou, a PhD candidate in electrical engineering in the School of Engineering and Applied Sciences. “During the night, radiative cooling is easy because we don’t have solar input, so thermal emissions just go out and we realize radiative cooling easily. But daytime cooling is a challenge because the sun is shining. In this situation, you need to find strategies to separate solar heating from the cooling area.”

The work builds upon previous research Gan’s lab led that involved creating a cone-shaped system for electricity-free cooling in crowded cities to adapt to climate change.

“The new double-sided architecture realized a record local cooling power density beyond 280 watts per square meter. Under standard atmospheric pressure with no vacuum thermal isolation, we realized a temperature reduction of 14.5 degrees Celsius below the ambient temperature in a laboratory environment, and over 12 degrees Celsius in an outdoor test using a simple experimental system,” says the other co-first author, Haomin Song, PhD, a research assistant professor of electrical engineering in the School of Engineering and Applied Sciences.

“Importantly, our system does not simply waste the solar input energy. Instead, the solar energy is absorbed by the solar spectral selective mirrors, and it can be used for solar water heating, which is widely used as an energy efficient device in developing countries,” says Gan. “It can retain both the solar heating and radiative cooling effects in a single system with no need of electricity. It’s really sort of a ‘magic’ system of ice and fir.”

The research team will continue to investigate ways to improve the technology, including examining how to capture enough solar power to boil water, making it suitable for drinking.

Source link

Continue Reading
2 Comments

2 Comments

  1. Pingback: Indian Army Leases 4 Heron Unmanned Aerial Vehicles From Israel As Part of Its Emergency Procurement

  2. Pingback: Sunlight Financial secures 2B in solar financing through expanded partnership with Tech CU

Leave a Reply

Solar Energy

Star Catcher showcases space energy beaming tech at Jacksonville stadium

Published

on

By

Star Catcher showcases space energy beaming tech at Jacksonville stadium


Star Catcher showcases space energy beaming tech at Jacksonville stadium

by Clarence Oxford

Los Angeles CA (SPX) Mar 24, 2025






Star Catcher Industries, Inc. (“Star Catcher”), a leader in the field of space-to-space energy transfer, has completed its first public demonstration of space power beaming technology. This milestone event, held at EverBank Stadium in Jacksonville, Florida, marks significant progress toward the development of a space-based energy grid designed to provide uninterrupted power to satellites and space infrastructure.

During the demonstration, Star Catcher deployed its proprietary system to harness concentrated solar energy and beam it over a distance exceeding 100 meters. The energy was transmitted to a series of standard satellite solar panels, effectively showcasing the system’s compatibility with existing spacecraft hardware. This demonstration highlighted the adaptability of Star Catcher’s technology, which requires no modifications to current satellite power systems, allowing seamless integration into existing orbital platforms.



“This demonstration marks the first end-to-end test of our space power beaming technology, proving we can collect and wirelessly transmit energy with the precision needed for space applications,” said Andrew Rush, Co-Founder and CEO of Star Catcher. “Today’s success puts us one step closer to eliminating power constraints in space and unlocking new capabilities for satellites and the customers they serve.”



The EverBank Stadium event represents a foundational achievement for the planned Star Catcher Network, an orbital power infrastructure intended to offer on-demand, continuous energy supply to satellites and other space-based assets. By validating the core functionality of its power transmission technology in a real-world setting, Star Catcher has demonstrated its readiness to move toward larger-scale applications.



Looking ahead, the company is preparing for a more ambitious trial at Space Florida’s Launch and Landing Facility (LLF) this summer. This future demonstration aims to transmit hundreds of watts of power wirelessly across a distance greater than one kilometer, energizing multiple simulated satellites simultaneously. The LLF site, historically used for Space Shuttle landings, will provide a fitting backdrop for this next phase of development.



Star Catcher’s momentum in advancing space power solutions is further bolstered by recent financial and governmental support. The firm secured a $12.25 million seed investment co-led by Initialized Capital and B Capital. In addition, it received an AFWERX SBIR Phase 1 contract to enhance its capabilities in space-based power transmission.



Rooted in Jacksonville, Star Catcher has deep ties to the local space innovation ecosystem. By hosting its inaugural technology demonstration at EverBank Stadium, in partnership with the Jacksonville Jaguars, the company reinforced its commitment to community involvement. The event also served as a unique educational platform, allowing local students to engage with groundbreaking space technology developed within their region.


Related Links

Star Catcher Industries

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Framatome and Perpetual Atomics to Scale Up Space Battery Production for Future Missions

Published

on

By

Framatome and Perpetual Atomics to Scale Up Space Battery Production for Future Missions


Framatome and Perpetual Atomics to Scale Up Space Battery Production for Future Missions

by Sophie Jenkins

London, UK (SPX) Mar 24, 2025






Framatome and Perpetual Atomics have formalised a new strategic partnership through a Memorandum of Understanding (MoU), aiming to scale up the production of americium-based radioisotope power systems, often referred to as “space batteries.” Signed during the Farnborough International Space Show, the agreement outlines a joint effort to advance the industrial processing of americium into sealed sources for radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).

These power systems, which generate heat through the natural decay of radioisotopes, can use that heat directly or convert it into electrical energy. Among available isotopes, americium-241 stands out due to its lengthy half-life of approximately 430 years, making it an optimal choice for space missions requiring sustained energy over extended durations.



The collaboration is designed to address the need for reliable energy solutions for deep space exploration, with a focus on industrialising the manufacturing processes to meet the demands of upcoming missions.



“We are delighted to collaborate with Perpetual Atomics to jointly pioneer the further development of nuclear power technology, pushing new frontiers in enabling deep space exploration. The partnership forges Perpetual Atomics’ cutting-edge technology in radioisotope nuclear power systems with Framatome’s global nuclear pedigree in production-scale industrialisation,” said Dr. Kason Bala, Chief Commercial Officer, UK Defence and Space at Framatome Ltd.



Professor Richard Ambrosi, Chief Scientific Officer, founder, and Director of Perpetual Atomics, commented: “The UK and Europe host a large inventory of americium, and this combined with the technology maturity, know-how, and industrial capability to scale production and manufacturing establishes an important foundation for the UK and European Space Agency (ESA) programmes. Perpetual Atomics looks forward to working closely with Framatome to develop industrialisation solutions for radioisotope power systems at scale.”



The agreement leverages Framatome’s extensive experience in nuclear manufacturing and regulatory compliance and Perpetual Atomics’ two decades of innovation in the field, much of which has been driven by the Space Nuclear Power group at the University of Leicester. Framatome Space and Framatome Ltd are expected to play significant roles in supporting lunar and Mars exploration missions under UK and ESA initiatives later this decade.


Related Links

Framatome

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

800-mn-euro battery factory to be built in Finland

Published

on

By

800-mn-euro battery factory to be built in Finland


800-mn-euro battery factory to be built in Finland

by AFP Staff Writers

Helsinki (AFP) Mar 20, 2025






A Chinese-Finnish company announced Thursday it would begin building a battery materials plant in Finland in April, the first of its kind in the Nordic country.

The plant will produce cathode active material, a key component in lithium-ion batteries used in electric vehicles and for energy storage, said Easpring Finland New Materials, a company co-owned by Finnish Minerals Group and Beijing Easpring Material Technology.

It said the investment was worth 800 million euros ($868 million).

The announcement came one week after a bankruptcy filing by Swedish battery maker Northvolt, which had planned to develop cathode production but dropped those plans to focus on battery cell production as it fought for survival.

Easpring Finland New Materials said commercial production was expected to begin in 2027.

The plant, to be located in Kotka in southeast Finland, will initially produce 60,000 tonnes of cathode active material annually.

At full production capacity, it could supply cathode material for the production of around 750,000 electric vehicles annually, the company said.

Matti Hietanen, the chief executive of Finnish Minerals Group, said the investment created an “entirely new kind of industry in Finland related to the production of lithium-ion batteries” and represented a European “spearhead project for the industry.”

The new plant will employ 270 people and an area of around 80 hectares had been reserved for its construction.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Trending