Connect with us

Solar Energy

Singapore inaugurates new floating solar farm to meet energy needs

Published

on

Singapore inaugurates new floating solar farm to meet energy needs

Singapore launched a 45-hectare solar farm that is expected to supply at least five local water treatment plants in the country and reduce carbon emissions in line with the country’s Green Plan.

Prime Minister Lee Hsien Loong said Wednesday at the opening ceremony that the 60-megawatt Sembcorp Tengeh Floating Solar Farm was a critical step forward for Singapore in environmentally sustainable water treatment, Channel News Asia reported.
“Innovations such as floating solar farms will help us overcome our physical constraints,” Lee said.
“I hope this project will give our solar and renewable energy industry a boost, and pave the way for more such facilities to be built here and in the region … as we transition into a low-carbon world.”
Singapore has expanded its solar capacity seven-fold since 2015, according to the Straits Times Wednesday.
The 155,000 solar panels of the Tengeh Reservoir is the equivalent of 45 soccer fields in size, the report said.
Sembcorp Industries, a local engineering and construction company, built the solar farm with Singapore’s national water agency, PUB.
The company and government agency said in statement that the solar farm would make Singapore “one of the few countries in the world to have a 100% green waterworks system.”
Sembcorp and PUB also said the amount of electricity generated from the project would be enough to offset about 7% of PUB’s annual energy needs.
The Tengeh solar farm would reduce carbon emissions by about 32 kilotons annually – equivalent to equal to taking off the road about 7,000 cars off roads, according to Channel News Asia.
The prime minister said Singapore was taking advantage of “year-round bright sunlight.”
“As the cost of solar cells came down, solar power became increasingly viable and attractive to us, so we made use of whatever available space we could find to install solar panels,” Lee said. “We put them on building rooftops, we put them on vacant state properties.”

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Momentus and Ascent Solar Technologies announce new solar array partnership

Published

on

By

Momentus and Ascent Solar Technologies announce new solar array partnership


Momentus and Ascent Solar Technologies announce new solar array partnership

by Staff Writers

Momentus






by Clarence Oxford
Los Angeles CA (SPX) Apr 18, 2024
Momentus Inc. (NASDAQ: MNTS) and Ascent Solar Technologies (Nasdaq: ASTI) has unveiled their partnership aimed at jointly marketing innovative solar arrays that integrate Momentus’s low-cost Tape Spring Solar Array (TASSA) technology and Ascent’s advanced, flexible photovoltaic modules.

The surge in satellite production and deployment underscores a critical demand for affordable and efficient solar arrays. This collaboration will deliver a solar solution offering significant benefits including cost-effectiveness, durability under extreme space conditions, and high power output capabilities.



Following the successful initial demonstration of TASSA in orbit, launched via the Vigoride-6 mission, Momentus is enhancing the system with Ascent’s newer, more efficient Titan Module solar blankets. These upgrades aim to optimize power generation while reducing costs, with TASSA designed to support high-volume satellite operations by accommodating multiple units within standard launch payload configurations.



Rob Schwarz, CTO of Momentus, noted, “TASSA aims to empower small satellites with substantial power capabilities without compromising on mass, thermal management, or budget. This innovation not only maximizes space utilization within launch vehicles but also expedites satellite constellation deployment.”



The system’s adaptability includes retractable features to minimize exposure to space debris and adverse weather, potentially extending mission lifespans and operational reliability.



Paul Warley, CEO of ASTI, highlighted the suitability of their photovoltaic technology for space applications, emphasizing its durability and lightweight attributes which are critical in harsh orbital environments. “Our technology is designed to deliver sustained power output over time with significantly reduced mass, which is fundamental for successful long-term missions,” said Warley.



This partnership is set to streamline satellite array systems, making prolonged, cost-efficient space missions feasible.


Related Links

Ascent Solar Technologies

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Quantum material achieves up to 190% efficiency in solar cells

Published

on

By

Quantum material achieves up to 190% efficiency in solar cells


Quantum material achieves up to 190% efficiency in solar cells

by Clarence Oxford

Los Angeles CA (SPX) Apr 17, 2024







Researchers from Lehigh University have developed a material that significantly enhances the efficiency of solar panels.

A prototype incorporating this material as the active layer in a solar cell displays an average photovoltaic absorption rate of 80%, a high rate of photoexcited carrier generation, and an external quantum efficiency (EQE) reaching up to 190%. This figure surpasses the theoretical Shockley-Queisser efficiency limit for silicon-based materials, advancing the field of quantum materials for photovoltaics.



This work signifies a major advance in sustainable energy solutions, according to Chinedu Ekuma, professor of physics at Lehigh. He and Lehigh doctoral student Srihari Kastuar recently published their findings in the journal Science Advances. Ekuma highlighted the innovative approaches that could soon redefine solar energy efficiency and accessibility.



The material’s significant efficiency improvement is largely due to its unique intermediate band states, which are energy levels within the material’s electronic structure that are ideally positioned for solar energy conversion.



These states have energy levels in the optimal subband gaps-energy ranges capable of efficiently absorbing sunlight and producing charge carriers-between 0.78 and 1.26 electron volts.



Moreover, the material excels in absorbing high levels in the infrared and visible regions of the electromagnetic spectrum.



In traditional solar cells, the maximum EQE is 100%, which corresponds to the generation and collection of one electron for each photon absorbed. However, newer materials and configurations can generate and collect more than one electron per high-energy photon, achieving an EQE over 100%.



Multiple Exciton Generation (MEG) materials, though not yet widely commercialized, show immense potential for enhancing solar power system efficiency. The Lehigh-developed material utilizes intermediate band states to capture photon energy typically lost in traditional cells, including energy lost through reflection and heat production.



The research team created this novel material using van der Waals gaps, atomically small spaces between layered two-dimensional materials, to confine molecules or ions. Specifically, they inserted zerovalent copper atoms between layers of germanium selenide (GeSe) and tin sulfide (SnS).



Ekuma developed the prototype based on extensive computer modeling that indicated the system’s theoretical potential. Its rapid response and enhanced efficiency strongly indicate the potential of Cu-intercalated GeSe/SnS as a quantum material for advanced photovoltaic applications, offering a path for efficiency improvements in solar energy conversion, he stated.



While the integration of this quantum material into existing solar energy systems requires further research, the techniques used to create these materials are already highly advanced, with scientists mastering precise methods for inserting atoms, ions, and molecules.



Research Report:Chemically Tuned Intermediate Band States in Atomically Thin CuxGeSe/SnS Quantum Material for Photovoltaic Applications


Related Links

Lehigh University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Project receives funding for advanced solar-thermal research

Published

on

By

Project receives funding for advanced solar-thermal research


Project receives funding for advanced solar-thermal research

by Sophie Jenkins

London, UK (SPX) Apr 12, 2024






The University of Surrey, leading a collaboration with the University of Bristol and Northumbria University, has received a GBP 1.1 million grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop solar-thermal devices. These devices aim to revolutionize the way we heat homes and generate power, differing from traditional solar cells by converting sunlight into heat for energy production.

The research focuses on creating surfaces that selectively absorb sunlight and emit heat through near-infrared radiation. This project leverages the combined expertise of the institutions in photonics, advanced materials, applied electromagnetics, and nanofabrication to address a global need for efficient solar energy utilization.



Professor Marian Florescu, Principal Investigator from Surrey, highlighted the importance of the project: “The sun provides an immense amount of energy daily, much more than we currently harness. By advancing these solar-absorbing surfaces, we aim to transform solar energy use into a sustainable powerhouse for our increasing energy needs.”



Goals of the project include developing high-temperature solar absorbers, enhancing the efficiency of solar-absorbing structures, and improving the management of heat generated from sunlight. Prototypes will be constructed to demonstrate these technologies.



Professor Marin Cryan, Co-Principal Investigator from the University of Bristol, explained their focus on thermionic solar cell technology, which uses concentrated sunlight to initiate electron emission for high-efficiency solar cells.



Dr. Daniel Ho, Co-Principal Investigator from Northumbria University, added: “Our university leads in thermophotovoltaic research, utilizing advanced thermal analysis techniques. We’re excited to contribute to groundbreaking developments in renewable energy.”


Related Links

University of Surrey

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.