Connect with us

Solar Energy

Solestial receives NASA SBIR Ignite contracts for next generation solar array

Published

on

Solestial receives NASA SBIR Ignite contracts for next generation solar array


Solestial receives NASA SBIR Ignite contracts for next generation solar array

by Staff Writers

Tempe AZ (SPX) Nov 08, 2023






Solestial, Inc. has been awarded $849,954 for a Phase II Small Business Innovation Research (“SBIR”) contract from the National Aeronautics and Space Administration (“NASA”). The winning proposal titled, “Next Generation Silicon Based Solar Arrays for Space Stations and Other Permanent Space Infrastructure,” comes on the heels of a $149,987 Phase I contract in January 2023. The contracts are from a new pilot program, SBIR Ignite, that funds commercially viable technologies from U.S. startups to support research and development and promote economic growth.

The 18-month SBIR Phase II contract will provide funds to support development of next generation, 50-kilowatt (“kW”) class solar array wings. Solestial’s silicon solar blanket technology will allow for arrays larger than any ever built, while also maintaining lower mass and competitive efficiency. The array will be developed in collaboration with Opterus Research and Development (“Opterus”) who will develop a low-cost, novel deployment system for Solestial’s ultrathin, flexible, silicon solar blankets.



“The private space stations and lunar bases of tomorrow will require a tremendous amount of power, and currently, there are no affordable and scalable space solar technologies that can accommodate this demand,” said Stan Herasimenka, Solestial Co-Founder and CEO. “Our affordable and low-mass solar blankets will help to overcome size, cost, and manufacturing limitations to power large-scale spacecraft and surface infrastructure. We’re excited to work with Opterus to make this vision a reality.”



Solestial’s contract-winning proposal focuses on integrating its ultrathin, low mass, radiation-hardened solar blankets with Opterus’ patent pending Retractable-Rollable Mast Array (“R-ROMA”) advanced deployable solar array structure. The R-ROMA is a highly scalable tensioned solar blanket array with double z-folding panels deployed by a single state-of-the-art rollable composite boom. The partnership between Solestial and Opterus will marry the two technologies to overcome the size, cost, and mass limitations of existing solar array technologies. Ultimately, Solestial hopes to achieve 50 kW scale and 200 W/kg array-level specific power while simultaneously reducing costs and scaling manufacturing potential.



Solestial’s Phase I SBIR Ignite contract made it possible to develop the critical technologies required to create a working prototype of the silicon blanket technology. The Phase II award will fund a full-size 50 kW solar array design and space testing of a scaled model.



“We’re excited to be partnering with Solestial on this pioneering technology development project,” said Erik Pranckh, Director of Business Development, at Opterus. “Our high-performance deployment systems pair perfectly with low-mass solar blankets from Solestial. Together, we can develop the powerful, affordable, next-generation solar arrays needed to power development in space.”



The Ignite award marks the ninth such contract received by Solestial. To date, the firm has received nearly $4 million in contracts from NASA, the National Science Foundation, and the U.S. Air Force.


Related Links

Opterus R and D
Solestial

All About Solar Energy at SolarDaily.com





Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

A single molecule elevates solar module output and stability

Published

on

By

A single molecule elevates solar module output and stability


A single molecule elevates solar module output and stability

by Sophie Jenkins

London, UK (SPX) Apr 24, 2025






A new molecule developed through international collaboration has been shown to significantly improve both the performance and durability of perovskite solar cells, according to a recent study published in *Science*. The discovery centers on a synthetic ionic salt named CPMAC, which originates from buckminsterfullerene (C60) and has been shown to outperform traditional C60 in solar applications.

Researchers from the King Abdullah University of Science and Technology (KAUST) played a key role in the development of CPMAC. While C60 has long been used in perovskite solar cells due to its favorable electronic properties, it suffers from stability issues caused by weak van der Waals interactions at the interface with the perovskite layer. CPMAC was engineered to address these shortcomings.



“For over a decade, C60 has been an integral component in the development of perovskite solar cells. However, weak interactions at the perovskite/C60 interface lead to mechanical degradation that compromises long-term solar cell stability. To address this limitation, we designed a C60-derived ionic salt, CPMAC, to significantly enhance the stability of the perovskite solar cells,” explained Professor Osman Bakr, Executive Faculty of the KAUST Center of Excellence for Renewable Energy and Sustainable Technologies (CREST).



Unlike C60, CPMAC forms ionic bonds with the perovskite material, strengthening the electron transfer layer and thereby enhancing both structural stability and energy output. Cells incorporating CPMAC demonstrated a 0.6% improvement in power conversion efficiency (PCE) compared to those using C60.



Though the gain in efficiency appears modest, the impact scales up dramatically in real-world energy production. “When we deal with the scale of a typical power station, the additional electricity generated even from a fraction of a percentage point is quite significant,” said Hongwei Zhu, a research scientist at KAUST.



Beyond efficiency gains, CPMAC also enhanced device longevity. Under accelerated aging tests involving high heat and humidity over 2,000 hours, solar cells containing CPMAC retained a significantly higher portion of their efficiency. Specifically, their degradation was one third that observed in cells using conventional C60.



Further performance evaluation involved assembling the cells into four-cell modules, offering a closer approximation to commercial-scale solar panels. These tests reinforced the molecule’s advantage in both durability and output.



The key to CPMAC’s success lies in its capacity to reduce defects within the electron transfer layer, thanks to the formation of robust ionic bonds. This approach circumvents the limitations posed by van der Waals forces typical of unmodified C60 structures.



Research Report:C60-based ionic salt electron shuttle for high-performance inverted perovskite solar modules


Related Links

KAUST Center of Excellence for Renewable Energy and Storage Technologies

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Indonesia says China’s Huayou to replace LGES in EV battery project

Published

on

By

Indonesia says China’s Huayou to replace LGES in EV battery project


Indonesia says China’s Huayou to replace LGES in EV battery project

by AFP Staff Writers

Jakarta (AFP) April 23, 2025






China’s Zhejiang Huayou Cobalt is replacing South Korea’s LG Energy Solution as a strategic investor in a multibillion-dollar project to build an electric vehicle battery joint venture in Indonesia, officials said on Wednesday.

The South Korean company, which was part of a consortium that signed a 142 trillion rupiah ($8.4 billion) “Grand Project” in 2020, announced its withdrawal from the project this week, citing factors including market conditions and the investment environment.

Energy and Mineral Resources Minister Bahlil Lahadalia said LG Energy Solution’s decision would not significantly affect the project, which aims to establish a local electric vehicle battery value chain in Indonesia.

“Changes only occur at the investor level, where LG no longer continue its involvement… and has been replaced by a strategic partner from China, namely Huayou,” Bahlil said in a statement.

“Nothing has changed from the initial goal, namely making Indonesia as the center of the world’s electric vehicle industry.”

Indonesia, home to the world’s largest nickel reserve, has been seeking to position itself as a key player in the global electric vehicle supply chain by leveraging its vast reserve of the critical mineral to attract investments.

The government decided not to move forward with the South Korean company in the project due to the long negotiation process with the firm to realise its investment, Investment Minister Rosan Roeslani said.

Rosan cited Huayou’s familiarity with Indonesia as one of the reasons why the government chose the company to succeed LG Energy Solution.

“Huayou had invested in Indonesia,” Rosan said.

“They have sources to develop the industry going forward.”

LG Energy Solution said in a statement on Tuesday that it will continue to explore “various avenues of collaboration” with the Indonesian government, including in its battery joint venture.

HLI Green Power, a joint venture between LG Energy Solution and Hyundai Motor Group, operates Indonesia’s first electric vehicle battery plant, which was launched in 2024 with a production capacity of up to 10 Gigawatt hours (GWh) of cells annually.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Politecnico di Milano explores global potential of agrivoltaics for land use harmony

Published

on

By

A single molecule elevates solar module output and stability


Politecnico di Milano explores global potential of agrivoltaics for land use harmony

by Erica Marchand

Paris, France (SPX) Apr 23, 2025






A research team from the Politecnico di Milano has presented new insights into how agrivoltaic systems could resolve growing tensions over land use between agricultural production and solar energy development. Led by Maddalena Curioni, Nikolas Galli, Giampaolo Manzolini, and Maria Cristina Rulli, the study demonstrates that integrating photovoltaic panels with crop cultivation can significantly mitigate land-use conflict while maintaining food output.

Published in the journal Earth’s Future, the study highlights that between 13% and 16% of existing ground-mounted solar installations have displaced former farmland, underscoring the competition for arable land. In contrast, the researchers propose that deploying agrivoltaic systems on between 22% and 35% of non-irrigated agricultural land could enable dual use without substantially affecting crop yields.



Using a spatial agro-hydrological model, the researchers simulated how 22 crop types respond to varying degrees of solar shading from photovoltaic panels. Their simulations covered a broad range of climates and geographies, generating a global suitability map for agrivoltaic deployment. The results underscore the feasibility of this approach in many regions, especially those with compatible crops and moderate solar intensity.



“Agrivoltaics cannot be applied everywhere, but according to our results, it would be possible to combine cultivation and energy production in many areas of the world without significant reductions in yield,” said Nikolas Galli, researcher at the Glob3Science Lab and co-author of the study.



Giampaolo Manzolini, professor in the Department of Energy, noted additional benefits: “Using the land for both cultivation and photovoltaic systems increases overall output per occupied surface area while reducing production costs. In addition, installing crops underneath the photovoltaic panels reduces the panel operating temperature and increases their efficiency.”



“This technology could help reduce land competition while improving the sustainability of agricultural and energy systems,” added Maria Cristina Rulli, who coordinated the research.



The team emphasizes that their findings could inform strategic policy decisions and investment strategies aimed at maximizing land productivity while supporting both food security and renewable energy goals.



Research Report:Global Land-Water Competition and Synergy Between Solar Energy and Agriculture


Related Links

Politecnico di Milano

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending