TOP SCEINCE
Some plastic straws degrade quicker than others, new study shows
Straws are one of the most common plastic waste products found on coastlines. As more and more plastic products are being produced, consumed, and disposed of, scientists and manufacturers are developing alternative materials that work equally as well, and don’t contribute to persistent plastic pollution in the environment.
In a new paper published in ACS Sustainable Chemistry & Engineering, WHOI scientists Collin Ward, Bryan James, Chris Reddy, and Yanchen Sun put different types of plastics and paper drinking straws head-to-head to see which degrade the fastest in the coastal ocean. They partnered with scientists from bioplastic manufacturing company Eastman, who provided funding, contributed as coauthors, and supplied materials for the study.
“We lack a firm understanding of how long plastics last in the ocean, so we’ve been designing methods to measure how fast these materials degrade,” Ward said. “It turns out, in this case, there are some bioplastic straws that actually degrade fairly quickly, which is good news.”
Their approach involved suspending eight different types of straws in a tank of continuously flowing seawater from Martha’s Vineyard Sound, Massachusetts. This method also controlled the temperature, light exposure, and other environmental variables to mimic the natural marine environment. All straws were monitored for signs of degradation over 16 weeks, and the microbial communities growing on the straws were characterized.
“My interest has been to understand the fate, persistence, and toxicity of plastic and how we can use that information to design next-generation materials that are better for people and the planet,” James said. “We have the unique capability where we can bring the environment of the ocean on land in our tanks at the environmental systems laboratory. It gives us a very controlled environment with natural seawater.”
They tested straws made of CDA, polyhydroxyalkanoates (PHA), paper, PLA, and PP. In the weeks the straws were submerged in the tanks, the CDA, PHA, and paper straws degraded by up to 50%, projecting environmental lifetimes of 10-20 months in the coastal ocean. The PLA and PP straws showed no measurable signs of degradation.
The scientists then compared two straws made from CDA — one a solid and the other a foam, both provided by Eastman. The straw made from foamed CDA was a prototype to see if increasing the surface area would accelerate break down. They found that the degradation rate of the foam straw was 184% faster than its solid counterpart, resulting in a shorter projected environmental lifetime than the paper straws.
“The unique aspects of this foam straw are that it’s able to have a shorter expected lifetime than the paper straws but retain the properties that you enjoy of a plastic or a bioplastic straw,” James said, making it a promising alternative to conventional plastic straws compared to paper straws, which degrade quickly in the ocean but sour user experience by getting soggy, according to the authors.
“This study can be immensely valuable for straw manufacturers by providing informed and transparent data when selecting a material for straws. Even more, it provides reassurance that CDA-based straws won’t add to the persistent plastic pollution, while also demonstrating straw manufacturers’ commitment to offering a sustainable product that reduces risk to marine life,” said Jeff Carbeck, Eastman’s Vice President of Corporate Innovation.
Science supports a push away from conventional plastic material. Plastic pollution causes harm to humans and ecosystems and the plastic industry is a large-scale contributor to climate change, accounting for roughly 4 to 5% of all greenhouse gas emissions across their lifecycle. With plastic waste becoming ubiquitous in the global ocean and marine food chain over the past 50 years, it’s important to identify new materials that are sustainably sourced, contribute to the shift from a linear to a circular economy, and break down if they incidentally leak into the environment.
“While some push to shift away from plastics, the reality is that plastics are here to stay. We’re trying to accept the fact that these materials are going to be used by consumers, and then we can work with companies to minimize the impacts of them should they leak into the environment,” Ward said.
“We recognize the importance of testing, validating and understanding the marine degradation of our CDA based products, but lacked the necessary resources,” Carbeck said. “Knowing that WHOI possessed the expertise and facilities, we engaged in a collaborative effort to address this challenge. This partnership showcases the power of industry-academia collaboration in advancing shared goals and making a positive impact.”
The research team also found that the microbial communities of the straws that degraded were unique to each straw material. However, the microbial communities on both non-degrading straws were the same despite having vastly different chemical structures. This provided further evidence that the native microbes were degrading the biodegradable straws, whereas the non-biodegradable straws likely persist in the ocean.
“Our understanding of the impacts of plastic pollution on ocean health are really uncertain, and a lot of this boils down to not know the long-term fates of these materials,” Ward said. He and the rest of the research team plan to continue measuring the degradability of plastic materials, with the hope of guiding where the industry goes next.
“There are a lot of advantages of partnering with material manufacturers, including access to analytical facilities, and knowledge about and access to their materials that you don’t get if you work in your own silo,” Ward said. “We’re trying to optimize their products for degradation in the environment and ultimately the good of the planet.”
Key Takeaways
- Not all plastics are created the same, and some last longer in the ocean than others. WHOI scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment. They focused on drinking straws first, as they are one of the most prevalent forms of plastic waste found in beach cleanups.
- The authors found that straws made from cellulose diacetate (CDA), polyhydroxyalkanoates (PHA), and paper degraded by up to 50% in 16 weeks. They all had unique microbial communities that helped break down the material.
- A prototype straw from Eastman, made of foamed CDA, degraded more quickly than the solid, meaning that altering the surface area of the straw can speed up the degradation process.
- Science supports a shift away from persistent plastics — making it even more important to ensure new materials break down if they leak into the environment and don’t further pollute the ocean.
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles
A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions
A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies