Connect with us

TOP SCEINCE

Study used videos of realistic activities to measure how memory works day to day

Published

on

Study used videos of realistic activities to measure how memory works day to day

You might remember you ate cereal for breakfast but forget the color of the bowl. Or recall watching your partner put the milk away but can’t remember on which shelf.

A new Northwestern Medicine study improved memory of complex, realistic events similar to these by applying transcranial magnetic stimulation (TMS) to the brain network responsible for memory. The authors then had participants watch videos of realistic activities to measure how memory works during everyday tasks. The findings prove it is possible to measure and manipulate realistic types of memory.

“On a day-to-day basis we must remember complex events that involve many elements, such as different locations, people and objects,” said lead author Melissa Hebscher, a postdoctoral fellow at Northwestern University Feinberg School of Medicine. “”We were able to show that memory for complex, realistic events can be improved in a safe and non-invasive way using brain stimulation.””

The study was conducted on healthy young adults in a controlled laboratory setting. These methods, however, also could eventually be used to improve memory in individuals with memory disorders due to brain damage or neurological disorders, Hebscher said.

The study will be published Feb. 4 in the journal Current Biology.

A new approach to studying memory: Incorporating video

The study authors used TMS with the goal of altering brain activity and memory for realistic events. Immediately following stimulation, subjects performed a memory task while having their brains scanned using functional magnetic resonance imaging (fMRI).

Instead of showing study participants pictures or lists of words — typical practices in laboratory tests that analyze memory — participants in this study watched videos of everyday activities such as such as someone folding laundry or taking out the garbage.

“”Our study used video clips that more closely replicate how memory works on a day-to-day basis,” Hebscher said.

Following stimulation, study participants more accurately answered questions about the content of the video clips, such as identifying the shirt color an actor was wearing or the presence of a tree in the background.

Additionally, the study found that brain stimulation led to higher quality reinstatement of memories in the brain. Reinstatement is when the brain replays or relives an original event, Hebscher said. Following stimulation, a person’s brain activity while watching a video more closely resembled their brain activity when remembering that same video.

“This is why remembering can sometimes feel like ‘mental time travel,'” Hebscher said. “Our findings show that stimulation enhances this ‘mental time travel’ in the brain and improves memory accuracy. These findings have implications for the development of safe and effective ways to improve real-world memory.”

How the study worked

The study authors used a brain imaging technique called multi-voxel pattern analysis to compare patterns of brain activity when subjects were watching a video to brain activity when subjects were remembering that same video. The scientists measured the effect of stimulation by comparing memory and brain activity following stimulation of the memory network to the same measures following stimulation of a control brain region that does not belong to the memory network.

During the memory test, subjects watched a large set of video clips and later remembered them and answered true/false questions about the content of the videos. The researchers found that memory network stimulation improved the number of questions that subjects answered correctly. It also increased reinstatement of videos in brain regions associated with visual processing.

“Follow-up studies will work to gather more reliable measures of the brain network responsible for memory in healthy subjects as well as in patients with memory disorders,” Hebscher said. “Having a more reliable measurement of this network will help us more easily identify reinstatement in the brain and may help improve the effectiveness of stimulation for enhancing memory.”

The senior author is Joel Voss, associate professor of medical social sciences, neurology and psychiatry and behavioral sciences at Feinberg. Other Northwestern authors include Thorsten Kahnt, assistant professor of neurology at Feinberg, and postdoctoral fellow James E. Kragel.

This research was supported by grant R01- MH106512 from the National Institute of Mental Health.

Source link

Continue Reading
5 Comments

5 Comments

  1. Pingback: Acer Swift 3X Review: Power-packed Ultraportable - godsownmedia

  2. Pingback: Amazfit GTS 2 Review | godsownmedia

  3. Pingback: Interview: Nikon - "A flagship Nikon Z series mirrorless camera can be expected within the year"

  4. Pingback: Sugar not so nice for your child's brain development, study suggests: New research shows how high consumption affects learning, memory

  5. Pingback: Interview: David 'Dee' Delgado’s love letter to New York City, shot on 4x5 film

Leave a Reply

TOP SCEINCE

Warming of Antarctic deep-sea waters contribute to sea level rise in North Atlantic, study finds

Published

on

By

Study used videos of realistic activities to measure how memory works day to day


Analysis of mooring observations and hydrographic data suggest the Atlantic Meridional Overturning Circulation deep water limb in the North Atlantic has weakened. Two decades of continual observations provide a greater understanding of the Earth’s climate regulating system.

A new study published in the journal Nature Geoscience led by scientists at University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory, found that human-induced environmental changes around Antarctica are contributing to sea level rise in the North Atlantic.

The research team analyzed two decades of deep sea oceanographic data collected by observational mooring programs to show that a critical piece of Earth’s global system of ocean currents in the North Atlantic has weakened by about 12 percent over the past two decades.

“Although these regions are tens of thousands of miles away from each other and abyssal areas are a few miles below the ocean surface, our results reinforce the notion that even the most remote areas of the world’s oceans are not untouched by human activity,” said the study’s lead author Tiago Biló, an assistant scientist at the Rosenstiel School’s NOAA Cooperative Institute for Marine and Atmospheric Studies.

As part of the NOAA-funded project DeepT (Innovative analysis of deep and abyssal temperatures from bottom-moored instrument), the scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic.

This shrinking deep-ocean branch — that scientists call the abyssal limb — is part of the Atlantic Meridional Overturning Circulation (AMOC), a three-dimensional system of ocean currents that act as a “conveyer belt” to distribute heat, nutrients, and carbon dioxide across the world’s oceans.

This near-bottom branch is comprised of Antarctic bottom water, which forms from the cooling of seawater in the Southern Ocean around Antarctica during winter months. Among the different formation mechanisms of this bottom water, perhaps the most important is the so-called brine rejection, a process that occurs when salty water freezes. As sea ice forms, it releases salt into the surrounding water, increasing its density. This dense water sinks to the ocean floor, creating a cold, dense water layer that spreads northward to fill all three ocean basins — the Indian, Pacific, and Atlantic oceans. During the 21st century, the researchers observed that the flow of this Antarctic layer across 16°N latitude in the Atlantic had slowed down, reducing the inflow of cold waters to higher latitudes, and leading to warming of waters in the deep ocean.

“The areas affected by this warming spans thousands of miles in the north-south and east-west directions between 4,000- and 6,000-meters of depth,” said William Johns, a co-author and professor of ocean sciences at the Rosenstiel School. “As a result, there is a significant increase in the abyssal ocean heat content, contributing to local sea level rise due to the thermal expansion of the water.”

“Our observational analysis matches what the numerical models have predicted — human activity could potentially impose circulation changes on the entire ocean,” said Biló. “This analysis was only possible because of the decades of collective planning and efforts by multiple oceanographic institutions worldwide.”



Source link

Continue Reading

TOP SCEINCE

How 3D printers can give robots a soft touch

Published

on

By

Study used videos of realistic activities to measure how memory works day to day


Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.

“Robotic hardware can involve large forces and torques, so it needs to be made quite safe if it’s going to either directly interact with humans or be used in human environments,” said project lead Joohyung Kim, a professor of electrical & computer engineering at the University of Illinois Urbana-Champaign. “It’s expected that soft skin will play an important role in this regard since it can be used for both mechanical safety compliance and tactile sensing.

As reported in the journal IEEE Transactions on Robotics, the 3D-printed pads function as both soft skin for a robotic arm and pressure-based mechanical sensors. The pads have airtight seals and connect to pressure sensors. Like a squeezed balloon, the pad deforms when it touches something, and the displaced air activates the pressure sensor.

Kim explained, “Tactile robotic sensors usually contain very complicated arrays of electronics and are quite expensive, but we have shown that functional, durable alternatives can be made very cheaply. Moreover, since it’s just a question of reprogramming a 3D printer, the same technique can be easily customized to different robotic systems.”

The researchers demonstrated that this functionality can be naturally used for safety: if the pads detect anything near a dangerous area such as a joint, the arm automatically stops. They can also be used for operational functionality with the robot interpreting touches and taps as instructions.

Since 3D-printed parts are comparatively simple and inexpensive to manufacture, they can be easily adapted to new robotic systems and replaced. Kim noted that this feature is desirable in applications where cleaning and maintaining parts is expensive or infeasible.

“Imagine you want to use soft-skinned robots to assist in a hospital setting,” he said. “They would need to be regularly sanitized, or the skin would need to be regularly replaced. Either way,there’s a huge cost. However, 3D printing is a very scalable process, so interchangeable parts can be inexpensively made and easily snapped on and off the robot body.”

Tactile inputs like the kind provided by the new pads are a relatively unexplored facet of robotic sensing and control. Kim hopes that the ease of this new manufacturing technique will inspire more interest.

“Right now, computer vision and language models are the two major ways that humans can interact with robotic systems, but there is a need for more data on physical interactions, or ‘force-level’ data,” he said. “From the robot’s point of view, this information is the most direct interaction with its environment, but there are very few users — mostly researchers — who think about this. Collecting this force-level data is a target task for me and my group.



Source link

Continue Reading

TOP SCEINCE

Honey bees experience multiple health stressors out-in-the-field

Published

on

By

Study used videos of realistic activities to measure how memory works day to day


It’s not a single pesticide or virus stressing honey bees, and affecting their health, but exposure to a complex web of multiple interacting stressors encountered while at work pollinating crops, found new research out of York University.

Scientists have been unable to explain increasing colony mortality, even after decades of research examining the role of specific pesticides, parasitic mites, viruses or genetics. This led the research team to wonder if previous studies were missing something by focussing on one stressor at a time.

“Our study is the first to apply systems level or network analyses to honey bee stressors at a massive scale. I think this represents a paradigm shift in the field because we have been so focussed on finding the one big thing, the smoking gun,” says corresponding author of the new paper York Faculty of Science Professor Amro Zayed, York Research Chair in Genomics. “But we are finding that bees are exposed to a very complicated network of stressors that change quickly over time and space. It’s a level of complexity that we haven’t thought about before. To me, that’s the big surprise of this study.”

The paper, Honey bee stressor networks are complex and dependent on crop and region, published today in Current Biology, takes a much broader look at the interplay of stressors and their effects. The study team also included researchers from the University of British Columbia, Agriculture and Agri-Food Canada, the University of Victoria, the University of Lethbridge, the University of Manitoba, l’Université Laval, the University of Guelph, and the Ontario Beekeepers’ Association.

Not all stressors are the same, however. Some stressors are more influential than others — what researchers call the social media influencers of the bee world — having an outsized impact on the architecture of a highly complex network and their co-stressors. They also found that most of these influencer stressors are viruses and pesticides that regularly show up in combination with specific other stressors, compounding the negative effects through their interactions.

“Understanding which stressors co-occur and are likely to interact is profoundly important to unravelling how they are impacting the health and mortality of honey bee colonies,” says lead author, York Postdoctoral Fellow Sarah French of the Faculty of Science.

“There have been a lot of studies about major pesticides, but in this research, we also saw a lot of minor pesticides that we don’t usually think about or study. We also found a lot of viruses that beekeepers don’t typically test for or manage. Seeing the influencer stressors interact with all these other stressors, whether it be mites, other pesticides or viruses, was not only interesting, but surprising.”

French says the way influencer stressors co-occur with other stressors is similar to the way humans experience co-morbidities, such as when someone is diagnosed with heart disease. They are more likely to also have diabetes or high blood pressure or both, and each one impacts the other. “That’s similar to the way we examine bee colonies. We look at everything that’s going on in the colony and then compare or amalgamate all the colonies together to look at the broader patterns of what is happening and how everything is related. Two or multiple stressors can really synergize off each other leading to a much greater effect on bee health.”

From Québec to British Columbia, honey bee colonies were given the job of pollinating some of Canada’s most valuable crops — apples, canola oil and seed, highbush and lowbush blueberry, soybean, cranberry and corn. The study covered multiple time scales, providing numerous snapshots, rather than the usual single snapshot in time. The research team found that honey bees were exposed to an average of 23 stressors at once that combined to create 307 interactions.

Honey bees are a billion dollar industry. In 2021, honey bees contributed some $7 billion in economic value by pollinating orchards, vegetables, berries and oil seeds like canola, and produced 75 to 90 million pounds of honey. Figuring which stressors would provide the most benefit if managed would go a long way toward developing the right tools to tackle them, something beekeepers are often lacking.

The research is part of the BEECSI: ‘OMIC tools for assessing bee health project funded to the tune of $10 million by Genome Canada in 2018 to use genomic tools to develop a new health assessment and diagnosis platform powered by stressor-specific markers.

More research is needed to unravel how the stressors are interacting and impacting honey bee mortality and colony health going forward, says French. “It’s really teasing apart which of these compounds might have that relationship and how can we build off this to study those specific relationships.”

It can’t come soon enough, honey bees are currently facing poor health, colony loss, parasites, pathogens and heightened stressors worldwide. Some beekeepers in this country and the United States face a loss over winter of up to 60 per cent of their colonies.

“Our study suggests some combinations are occurring very frequently,” adds Zayed, “and that is relevant because we see them again and again, but we don’t know how these combinations affect bee health. It helps to prioritize which experiments we can now take back to the lab and establish how these interactions affect bees.”



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.