Connect with us

Camera

The absolute beginner’s guide to film photography: the ‘Sunny 16’ rule or how-to expose with no meter

Published

on

The absolute beginner’s guide to film photography: the ‘Sunny 16’ rule or how-to expose with no meter


Aaron Gold

No light meter? No problem. With the ‘Sunny 16’ rule you’ll never have to second-guess exposures again, even when photographing tricky scenes like sunsets.

All photos: Dan Bracaglia

The purpose of our Absolute beginner’s guide to film photography series is to help demystify the joys of shooting analog. And while we try not to dabble too much in specifics, there is one (sort-of) hard-and-fast analog-era rule we think every film (and digital) shooter should know: the ‘Sunny 16’ rule.

What is Sunny 16 and why is it important for film photography?

Sunny 16 is an easy way to set your camera’s exposure if you don’t have a working light meter or you suspect your camera’s light meter might be reading the scene improperly. The light meters in film cameras are generally much less sophisticated than those in today’s digital cameras, and they are easier to fool. The Sunny 16 rule provides a quick reality check on your meter readings, as well as a starting point to set exposure without the help of a meter.

How the Sunny 16 rule works

Lighting conditions Correct aperture when shooting
ISO 100 film @ 1/100 sec
Snow or sand F22
Sunny F16
Some clouds F11
Overcast F8
Heavy overcast F5.6
Sunset F4

It’s simple: Sunny 16 says that on a sunny day, you should set your aperture to F16 and your shutter speed to the reciprocal of your film speed, or as close to it as you can get. So if you’re shooting 100 ASA film, set F16 and 1/90 or 1/125 sec. Running 400 speed film? Try F16 and 1/500 sec. Your exposure may not be perfect, but it will be close enough to get a usable shot.

The Sunny 16 rule gives us a quick reality check on our meter readings, as well as a starting point to set exposure without the help of our meter

What if the sun isn’t out? If it’s a little cloudy, use F11; overcast, use F8; thunderclouds, F5.6; sunset, try F4. For very bright scenes (like snow), go the opposite way and use F22. Can’t remember all that? Don’t worry, you can buy stickers and t-shirts to remind you.

If you understand the basics of exposure, you can find comparable exposures that will work. Let’s say it’s a sunny day and you’re shooting 100 speed film. The Sunny 16 Rule tells you to shoot at F16 at 1/125 sec. But what if you want shallower depth of field than F16 will provide? No problem – you can open up your lens by three stops to F5.6, and compensate with a three-stop-quicker shutter speed of 1/1000 sec.

Shooting film on a sunny day? According to the Sunny 16 rule, simply set your aperture to F16, your shutter speed to the reciprocal of your film speed (so if you’re shooting ISO 100 film, ~1/100 sec), and your exposure should be close-enough to spot on; amazing!

I have a meter, do I need Sunny 16?

The whole purpose of having a meter is so you can get a more precise exposure, but the meters in older film cameras are relatively easy to fool. Meters are calibrated for what is known as middle gray, and for most scenes, which have a mixture of light and dark areas, that’s close enough. But if you are taking a photograph of something unusually light or dark, like a snowy landscape or someone wearing dark clothing, your meter may not give the correct exposure information.

If you are taking a photograph of something unusually light or dark, like a snowy landscape or a dark building, your camera’s meter may not give the correct exposure information

Here, Sunny 16 can act as a check for metering errors. Let’s say it’s a nice sunny day, and you’re shooting a jet-black car on ISO 200 film. You set your shutter sped to 1/250, and your meter tells you to set F8. The meter ‘sees’ that dark car and interprets it as middle gray, so it’ll recommend a wider aperture that will overexpose your photo. The meter’s recommendation is two stops off of what Sunny 16 tells you, and that’s a good indicator that your meter is wrong.

Why are film camera meters so easy to fool?

Shooting on an overcast day? Sunny 16 has got your back, simply open up your camera’s aperture up to F8 (and be there!).

Today, most digital cameras use sophisticated multi-segment meters that break your scene up into small parts and examine each one. Some cameras have a built-in database of sample exposures that can help them determine the contents of your scene and meter accordingly. Mirrorless cameras measure exposure from the exact same imaging sensor that captures the picture (and you can preview exposure precisely in the viewfinder).

Most film cameras from the 1960s, 70s and 80s have a center-weighted meter – they average the whole scene but give more importance to what’s in the middle

Film camera meters are nowhere near that smart. Some late-model film cameras have multi-zone matrix meters, but (aside from a handful of flagship pro SLRs) they tend to have relatively few segments. Most film cameras from the 1960s, 70s and 80s have a center-weighted meter. These meters average the whole scene and give more importance (‘weight’) to what’s in the middle, since that’s how most people frame their subjects. Some center-weighted meters give less weight to the upper section of the photo, which is where the sky generally is. Just turning the camera sideways can be enough to throw off the meter. Some older cameras have a spot meter, which only measures what’s in the middle of the frame. Framing with your subject off center is enough to give an incorrect measurement.

How do you know how your camera meters? Your camera’s manual should have an illustration showing the meter pattern. More sophisticated film cameras will let you switch between matrix, center-weighted and spot modes, but they can still be fooled.

What about a snowy day? According to Sunny 16, stopping down to F22 should get you fairly close to an accurate exposure.

What do I listen to: the meter or the Sunny 16 rule?

The Sunny 16 rule is pretty accurate, to the point that some very simple cameras display a sun and clouds rather than F-stop numbers. If your camera is within a stop or so of the Sunny 16 rule, the exposure will generally be close; when in doubt, underexpose a bit.

If your camera is within a stop or so of the Sunny 16 rule, the exposure will generally be close

If your meter is way off from Sunny 16, you might want to hedge your bets by shooting three pictures – one taken at the meter’s indicated exposure, one using the Sunny 16 rule, and one right in the middle. Be sure to make a note of your exposures and then check the finished result to see which was the most correct. Soon you’ll learn what situations can fool your meter and when it can be trusted – and you’ll also learn when the Sunny 16 rule by itself is good enough.

About

Our ‘Absolute beginner’s guide to film photography’ is an educational series of articles focused on demystifying the ins and outs of analog photography. Geared toward those discovering (or re-discovering) film, the series will cover everything from gear, to technique and more. View all of the articles in our guide here.

Source link

Continue Reading
Click to comment

Leave a Reply

Camera

World’s largest camera: 3.1 gigapixels for epic timelapse panos of the universe

Published

on

By

World’s largest camera: 3.1 gigapixels for epic timelapse panos of the universe


We have a winner for sensor Top Trumps: the LSST camera is the world’s largest astronomy camera. It’s more than 350 times the size of a full-frame sensor, for reference.

Photo: Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory

“Space,” according to Douglas Adams’ Hitchiker’s Guide to the Galaxy. “is big. Really Big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.”

It turns out the same is true of cameras made to map space. You may think your full-frame camera is big but that’s nothing compared to the Legacy Survey of Space and Time (LSST) camera recently completed by the US Department of Energy’s SLAC National Accelerator Laboratory.

You may have seen it referred to as the size of a small car, but if anything that under-sells it. SLAC has essentially taken all the numbers you might recognize from photography, made each of them much, much bigger and then committed to a stitched time-lapse that it hopes will help to understand dark matter and dark energy.

Unlike many astro and space projects, LSST is recognizably a camera: it has a mechanical shutter, lenses and rear-mounting slot-in filters.

Image: Chris Smith / SLAC National Accelerator Laboratory

We got some more details from Andy Rasmussen, SLAC staff physicist and LSST Camera Integration and Testing Scientist.

The LSST has a 3100 megapixel imaging surface. That surface is an array made up of 189 individual sensors, each of which is a 41 x 40mm 16.4MP CCD. Each of these sensors is larger than consumer-level medium format and when arranged together gives an imaging circle of 634mm (24.9″). That’s a crop factor of 0.068x for those playing along at home.

The individual pixels are 10μm in size, making each one nearly three times the area of the pixels in a 24MP full-frame sensor or seven times the size of those in a 26MP APS-C, 61MP full-frame or 100MP 44 x 33 medium format model.

To utilize this vast sensor, the LSST has a lens with three elements, one of which is recognized by Guinness World Records as “the world’s largest high-performance optical lens ever fabricated.” The front element is 1.57m in diameter (5.1 ft), with the other two a mere 1.2m (3.9 ft) and 72cm (2.4 ft) across. Behind this assembly can be slotted one of six 76cm (2.5 ft) filters that allow the camera to only capture specific wavelengths of light.

One of the six 76cm (2.5 ft) filters that are swapped over, typically once the camera has shot a set of images of the 1000 regions of the sky it captures.

Photo: Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory

This camera is then mounted as part of a telescope with a 10m effective focal length, giving a 3.5 degree diagonal angle of view (around a 634mm equiv lens, in full-frame terms). Rasumussen puts this in context: “the outer diameter of the primary mirror is 8.4 meters. Divide the two, and this is why the system operates at f/1.2.”

That’s f/0.08 equivalent (or around eight stops more light if you can’t remember the multiples of the square root of two for numbers that small).

Each 16MP chip has sixteen readout channels leading to separate amplifiers, each of which is read-out at 500k px/sec, meaning that it takes two seconds. All 3216 channels are read-out simultaneously. The chips will be maintained at a temperature of -100°C (-148°F) to keep dark current down: Rasmussen quotes a figure of < 0.01 electrons / pixel / second.

But the camera won’t just be used to capture phenomenally high-resolution images. Instead it’ll be put to work shooting a timelapse series of stitched panos.

The sensor array under construction in 2020. Each of the sensors in the 3 x 3 array being installed is a 41 x 40mm chip. The final camera uses 189 of these imaging sensors, plus another 8 for positioning the camera, along with 8 wavefront sensors at the corners of the array.

Photo: Farrin Abbott/SLAC National Accelerator Laboratory

The camera, which will be installed at the Vera C. Rubin Observatory in Chile, will shoot a series of 30 second exposures (or pairs of 15 second exposures, depending on the noise consequences for the different wavelength bands) of around 1000 sections of the Southern sky. Each region will be photographed six times, typically using the same filter for all 1000 regions before switching to the next, over the course of about seven days.

This whole process will then be repeated around 1000 times over a ten-year period to create a timelapse that should allow scientists to better understand the expansion of the universe, as well as allowing the observation of events such as supernova explosions that occur during that time.

The sensors, created by Teledyne e2v, are sensitive to a very broad range of light “starting around 320nm where the atmosphere begins to be transparent,” says Rasmussen: “all the way in the near-infrared where silicon becomes transparent (1050nm),”

The sensors, developed in around 2014, are 100μm thick: a trade-off between enhanced sensitivity to red light and the charge spread that occurs as you use deeper and deeper pixels.

No battery life figures were given, but the cost is reported as being around $168M.



Source link

Continue Reading

Camera

A nature photography tour of Madagascar, Part 1: Andasibe

Published

on

By

A nature photography tour of Madagascar, Part 1: Andasibe


Madagascar. A huge, wild, faraway Island. Even mentioning its name provokes an exotic, exciting feeling in my soul. I had wanted to visit Madagascar for many years before finally realizing my plans in 2022. It was one of the most wonderful trips I’ve done in recent years, one that stayed with me for a while. It included many adventures, diverse and exciting locations, new experiences and a heck of a lot of photography. Enough photography to be interesting (in my opinion, at least) even for the general photography crowd, not to mention nature photographers.

Madagascar may not be a beginner’s destination in the sense that it poses some challenges to the traveler. My scouting trip included extremely long drives (one of them two days in total, during which we had to sleep in a guest house surrounded by a very tall metal wall…).

In some locations, sleeping conditions aren’t on par with the expectations of the typical western tourist. The already-poor country was also badly hit by COVID-19, which left some of its better hotels permanently closed. It is currently recuperating and reinstating the tourism infrastructure, domestic flight schedule and higher-tier accommodation possibilities.

While it has more than its fair share of domestic problems, Madagascar is an absolute heaven for wildlife and landscape enthusiasts. In this series of articles, I’d like to tell you the story of my scouting trip to this magical island. I hope it gives you new insights and information about its sheer natural diversity and triggers your interest in visiting. While a Madagascar trip is not always easy or comfortable, it is extremely worth it for the adventurous soul.

Without further ado, let’s move on to my first stop on the trip: Andasibe-Mantadia National Park. Andasibe Park is located about 150 km (3-4 hours) east of Madagascar’s capital of Antananarivo, near the small village of Andasibe. It consists mostly of a vast rain-forest, which is habitat to numerous species, many of them endemic, rare and endangered, among which 11 lemur species, including brown lemurs, Diademed sifaka lemur, wooly lemur and others. There are several chameleon species and numerous bird and insect species. Andasibe is especially known for its population of the largest lemur species, the Indri Indri.

In general, lemurs are quite hard to photograph. They are energetic, move around quickly and often, and are increasingly reluctant to get close to humans since feedings are being phased out (a wonderful thing in any other respect). They live in dense forests, so good viewings and compositions are few and far between. The photographer often has to chase the animal as it moves through the canopy, which can be challenging and exhausting, especially in the wet, muddy, humid environment. I got back to the lodge absolutely dirty with mud and plant material from head to toe every day.

An adult Indri Indri in the rain.

Canon 5D4, Sigma 150-600mm F5-6.3
F6.3 | 1/500 sec | ISO 1600 | 516mm

Indri Indri (locally called Babakutu, which may be translated as “father of a little boy”) is a diurnal tree-dwelling lemur. It lives in family groups, feeding mainly on leaves but also seeds, fruits and flowers. Photographically, the Indri Indri is a wonderful subject. The black and white fur (with hints of brown and grey) is starkly contrasted by its beautiful, large green eyes (and by the colors of its forest habitat). It is also very loud and often bursts into song, allowing easier detection and photography of the singing itself.

The only photographic disadvantage is that it chooses to stay high up in the canopy most of the time (other than when going to the toilet), which can harm the shooting angle; remember, as wildlife photographers, we usually prefer an eye-level vantage point. When you see an image of an Indri Indri at eye level, chances are it was shot during human feeding, which should be avoided and discouraged.

The song of Babakutu is made of high-pitched glissandos and can be heard from far away. In my opinion, it’s pure joy to listen to. It’s very much an arboreal equivalent of a whale’s song.

Canon 5D4, Sigma 150-600mm F5-6.3
F6.3 | 1/320 sec | ISO 3200 | 600mm

Besides the Indri Indri, there are several other beautiful lemur species in Andasibe.

Brown lemurs are some of the most common lemurs, but they’re fun to photograph. They are also the most likely to climb to eye level, making them easier to capture.

Canon 5D4, Canon 70-300mm F4-5.6
F5 | 1/160 sec | ISO 3200 | 176mm

Eastern wooly lemur. Contrary to popular belief, they don’t usually smoke illicit substances.
More seriously, this lemur species is highly endangered due to rapid habitat loss.

Canon 5D4, Canon 70-300mm F4-5.6
F5.6 | 1/100 sec | ISO 800 | 277mm

The Diademed sifaka lemur is one of the largest and most colorful lemur species. Classified as critically endangered, population estimates for the species range between 6,000 and 10,000 individuals.

Canon 5D4, Sigma 150-600mm F5-6.3
F6.3 | 1/1250 sec | ISO 3200 | 388mm

An eastern lesser bamboo lemur (also known as the gray bamboo lemur). These lemurs are extremely quick and nimble, jumping from branch to branch in the thick forest. They are also incredibly cute and furry.

Canon 5D4, Sigma 150-600mm F5-6.3
F5.6 | 1/500 sec | ISO 3200 | 324mm

Malagasy chameleons are known for their striking colorations. I shot several species of chameleons on the trip, but the most beautiful one was the male Parson’s chameleon, whose coloration was especially vibrant and eye-pleasing.

A close-up portrait of a male Parson’s chameleon. Note the amazing coloration on the abdomen.

Canon 5D4, Canon 70-300mm F4-5.6
252mm, F5.6, 0.2 sec, ISO 100

Another close-up from a different angle. The horns are nicely visible here.

Canon 5D4, Canon 70-300mm F4-5.6
F5.6 | 1/250 sec | ISO 3200 | 244mm

In addition to the usual close-ups, I took one ultra-wide angle image with my 11-24mm to better show the chameleon’s habitat.

Canon 5D4, Canon 11-24mm F4
F11 | 1/4 sec | ISO 800 | 11mm

It’s interesting to note that the female Parson’s chameleon is comparatively dull in appearance. I guess the male is dressed to impress!

A female Parson’s chameleon.

Canon 5D4, Canon 70-300mm F4-5.6
F5 | 1/200 sec | ISO 1600 | 155mm

In the next article in this series, I’ll talk about shooting the Red Tsingy, a man-induced beautiful natural phenomenon, which was the next stop on my Madagascar trip.


Erez Marom is a professional nature photographer, photography guide and traveler based in Israel. You can follow Erez’s work on Instagram and Facebook, and subscribe to his mailing list for updates and to his YouTube channel.

If you’d like to experience and shoot some of the world’s most fascinating landscapes with Erez as your guide, take a look at his unique photography workshops in Svalbard, Greenland, Madagascar, the Lofoten Islands, Namibia and Vietnam.

Erez also offers video tutorials discussing his images and explaining how he achieved them.

Selected Articles by Erez Marom:





Source link

Continue Reading

Camera

Atomos announces Ninja Phone for connecting camera to iPhone for monitoring and recording

Published

on

By

Atomos announces Ninja Phone for connecting camera to iPhone for monitoring and recording



Atomos has announced the Ninja Phone, a monitor and recorder that connects cameras with HDMI out ports to the iPhone 15 Pro and iPhone 15 Pro Max. The unit acts as a ‘co-processor’ to encode a camera’s HDMI signal to 10-bit ProRes or H.265 and send the encoded video to the phone. There is also support for USB-C mic input.

A Ninja Phone iPhone app was also announced to control the unit. Through the app, users can control settings and file transfer between the Ninja Phone and their iPhone. The app will also allow for vertical video capture, live streaming and remote file uploading to cloud services. An encoded ProRes file can also be saved locally to the phone as a .mov file, allowing users to build some redundancy into their workflow by having the source camera and iPhone both save the same file.

There are some limits, however. Source camera output taps out at 1080/60p, meaning you can’t send a 4K signal from a camera to the Ninja Phone.

No plans were shared for bringing the device to Andriod phones or other USB-C iPhones.

Atomos’ announcement today spent considerable time gushing about the iPhone 15 Pro/Max display stats (2,000,000:1 contrast ratio and support for Dolby Vision, HDR10, and HLG). Atomos has said the device leans on Apple’s A17 chip to decode the video feed and display video with no latency, so it’s unclear how dependent the Phone Ninja is on Apple’s tech or if there are technical limits for if/when the Phone Ninja may come to other devices.

The Atomos Ninja Phone is expected to ship in June 2024 at an MSRP of $399. The unit will also require a $59 phone case, which Atomos says is needed to “ensure that the locking cable system can be deployed.”

Now your phone can be a Ninja too!

Melbourne, Australia, April 12, 2024 — Atomos announces Ninja Phone, a whisper quiet, 10-bit video co-processor for smart phones and tablets that lets you record from professional HDMI cameras.

The first release of Ninja Phone, demonstrated at NAB 2024 at the Atomos booth (C4931) is designed for iPhone 15 Pro and iPhone 15 Pro Max and their amazing OLED display. It’s a powerful combination that uses Atomos’ world-beating knowledge of Apple ProRes encoding and Apple’s cutting-edge silicon and screen technology to create the world’s most beautiful, portable, and connected professional monitor-recorder.

Atomos has a proud history of working closely with all leading Japanese camera manufacturers and as you would expect from an Atomos product, the Ninja Phone lets you connect any professional camera with an HDMI output to Apple’s magnificent OLED screen in HDR.

The Ninja Phone encodes the camera’s HDMI signal to ProRes or H.265, both formats at superb 10-bit quality for perfect HDR. The encoded video is sent via Ninja Phone’s USB-C output to the iPhone 15 Pro or Pro Max’s USB-C port. The iPhone’s super-advanced A17 system-on-a-chip decodes the pristine camera sensor image to display on the high-resolution iPhone screen.

The display is a massive improvement over typical built-in screens that come with most cameras, boasting a 2,000,000:1 contrast ratio and supporting Dolby Vision, HDR10, and HLG. It can display 11 stops of dynamic range with a peak brightness of 1600 nits, perfect for HDR and outdoor viewing.

The Ninja Phone iPhone app, downloadable from the App Store, controls and coordinates the operation of both the Ninja Phone and the iPhone, making them feel like a single, responsive device. For social media creators who need to shoot in 9:16 portrait mode, the Ninja Phone app adjusts to horizontal or vertical video modes. The Ninja Phone app will run on iOS and iPadOS, and will be downloadable at the time of shipping.

The camera’s output appears on the iPhone screen with zero latency thanks to Atomos’ super-efficient ProRes pipeline – encoding on the Ninja Phone and decoding via Apple’s state of the art iPhone.

We’ve added professional video and cinematic smarts to the world’s most advanced phone, says Atomos CEO and Co-Founder Jeromy Young. Ninja Phone is for the thousands of content creators who capture, store, and share video from their iPhone 15 Pro but aspire to work with professional cameras, lenses, and microphones. At the same time, the Ninja Phone is a perfect tool for longer-form professionals who want to adopt a cloud workflow without a complex and expensive technology footprint.

The ProRes-encoded video can be stored on the phone as a .mov file and/or simultaneously transcoded by the iPhone to 10-bit H.265 for workflows like camera to cloud, or live streaming via the iPhone’s built-in 5G and Wi-Fi 6E connectivity.

The Ninja Phone accommodates external iPhone accessories by integrating a separate USB-C hub to allow necessary professional add-ons like wireless USB-C microphones, for perfectly synchronizing video and audio. Third-party accessories are supported via the Ninja Phone with more added over time.

Powered by standard NP series batteries, a battery eliminator, or a USB-C 5V/3A input, the Ninja Phone charges the iPhone while in use with any of these power sources, ensuring long phone operation can match professional shoots.

Atomos has developed a unique and rugged locking ecosystem to maintain a secure grip on connected HDMI and USB-C cables. With Atomos locking cables, it is the most robust capture cable system available today, although it is fully compatible with standard, non-locking cables.

The iPhone 15 Pro’s enhanced connectivity opens a door for Ninja Phone users to make full use of Atomos’ Cloud Services (ACS). These include super-efficient Camera to Cloud workflows, remote live production, and cloud editing. With ACS, content creators can publish video to social media within minutes, and filmmakers can send their footage to their postproduction team via the cloud for the fastest possible production workflow.

I’m so proud that Atomos is once again teaming up with Apple to unlock video creativity through ProRes, and this time it’s on Apple’s most advanced device ever, the iPhone 15 Pro. I’m especially pleased that this product has no fan and is whisper quiet. Atomos has always had an amazing relationship with Japanese camera manufacturers too, and now the Ninja Phone connects these incredible cameras directly to an iPhone’s storage, monitor and its extraordinary wireless and cell networking,” added Young.

Thanks to the iPhone 15 Pro, this is the first time Ninja users will have access to an OLED monitor screen, which, at 446 PPI, is by far the highest resolution, most capable HDR monitor that’s ever been available to them,” added Young. It’s the perfect partner for many of the new, smaller format mirrorless cameras coming out of Japan, for example Fujifilm’s X100 and G series, Canon’s R5 Series, Sony Alpha Series, Nikon Z series cameras and Panasonics GH and S series.

Remarkably, the Ninja Phone weighs in at just 95gms, and a sprightly 335gms when coupled to an iPhone 15 Pro.

The Ninja Phone will cost USD/EUR 399, excluding local sales taxes, and is expected to begin shipping in June 2024. Customers will also need to choose the case for iPhone 15 Pro or iPhone 15 Pro Max, not just to protect the phone in normal use, but to ensure that the locking cable system can be deployed. The cases will be available separately at USD/EUR 59 each, also excluding local sales taxes.

In summary, the Ninja Phone is an essential addition to any filmmaker’s toolkit. It combines road-tested Atomos ProRes expertise with an out-of-this-world screen, proven professional monitoring features, and built-in mobile connectivity for collaborative, remote editing.



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.