Connect with us

Solar Energy

Trina Solar leading the compatibility charge in the ultra-high power era

Published

on

Trina Solar leading the compatibility charge in the ultra-high power era

Trina Solar says it is continuing to drive collaboration across the entire value chain to achieve full compatibility with Vertex 210mm silicon wafer modules, designed to enable 600W+ output. Since the launch of Vertex modules a year ago, the range of 210 Vertex compatible solar PV system components continues to expand. Numerous market tests have been completed with compatibility approvals from leading solar inverter and tracker manufacturers, enabling the upgrade in power.

In the race towards a climate-neutral economy in Europe, as set out in the EU Green Deal, Ultra High-Power solar energy systems play a vital role. The market is maturing fast, with Trina Solar at the forefront of production and open, collaborative innovation across the industry chain.

Trina Solar’s creation of three new 210 Vertex super factories in 2020 secures consistent product supply, projected to reach over 50GW globally at the end of 2021. This brings new-found confidence in high-energy solutions to the solar market, and more importantly, strengthens the value proposition of solar energy across utility sector.

The 600W+ Photovoltaic Open Innovation Ecological Alliance

One of Trina Solar’s first initiatives after launching 210mm technology helped to bring together influential solar companies and pledge a commitment to drive ultra-high power capabilities in the industry. The 600W+ Photovoltaic Open Innovation Ecological Alliance, announced in July 2020, is now made up of 66 companies spanning the industry in Europe and globally, across silicon, wafers, batteries, modules, inverters, tracker systems, materials, EPC, design institutes, professional research institutions and owners.

This Alliance aims to create a new collaborative and innovative ecosystem through open collaboration, synergizing the industry chain’s primary resources and integrating core processes such as R and D, manufacturing, and applications.

Member companies adopted a declaration stating they will work together to build products, systems, and standards for a next-generation technology platform, committing to maximizing the customer values of 600W+ Ultra-High Power modules and other related solutions at the application end.

Driving value in the Ultra-High Power Industry chain

Prior to March 2021, leading brands such as Huawei, Sungrow, SMA and Sineng announced the availability or launch timeline of 210 Vertex compatible central and string inverters.

We have also seen eight of the world’s leading photovoltaic tracker makers, Arctech Solar, Array Technologies, GameChange Solar, IDEEMATEC, Nextracker, PVH, Soltec, TrinaTracker, successively issue compatibility approvals for 210 Vertex modules.

These continuous compatibility advances with inverters, trackers and 210 modules raise the total system value and reduce costs in various scenarios. Specifically, low-voltage, high-current Vertex modules can realize a longer string, thereby reducing the number of strings, leading to reduction of BOS components, land and labor used, lowering overall EPC cost and LCOE, highlighting the power generation gain and cost advantages of ultra-high power modules.

An independent DNV GL assessment published in December 2020 calculated significant system advantages of Trina Solar’s bifacial dual-glass 210 Vertex modules. The report showed a reduction of BOS by 6.2% compared with conventional 166mm-450W and 182mm-535W modules in terms of BOS costs and LCOE by 3.72%.

This proactivity within the industry is paying off, demonstrating smooth chain collaboration and proven LCOE reductions, accelerating the entering grid parity era.

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Momentus and Ascent Solar Technologies announce new solar array partnership

Published

on

By

Momentus and Ascent Solar Technologies announce new solar array partnership


Momentus and Ascent Solar Technologies announce new solar array partnership

by Staff Writers

Momentus






by Clarence Oxford
Los Angeles CA (SPX) Apr 18, 2024
Momentus Inc. (NASDAQ: MNTS) and Ascent Solar Technologies (Nasdaq: ASTI) has unveiled their partnership aimed at jointly marketing innovative solar arrays that integrate Momentus’s low-cost Tape Spring Solar Array (TASSA) technology and Ascent’s advanced, flexible photovoltaic modules.

The surge in satellite production and deployment underscores a critical demand for affordable and efficient solar arrays. This collaboration will deliver a solar solution offering significant benefits including cost-effectiveness, durability under extreme space conditions, and high power output capabilities.



Following the successful initial demonstration of TASSA in orbit, launched via the Vigoride-6 mission, Momentus is enhancing the system with Ascent’s newer, more efficient Titan Module solar blankets. These upgrades aim to optimize power generation while reducing costs, with TASSA designed to support high-volume satellite operations by accommodating multiple units within standard launch payload configurations.



Rob Schwarz, CTO of Momentus, noted, “TASSA aims to empower small satellites with substantial power capabilities without compromising on mass, thermal management, or budget. This innovation not only maximizes space utilization within launch vehicles but also expedites satellite constellation deployment.”



The system’s adaptability includes retractable features to minimize exposure to space debris and adverse weather, potentially extending mission lifespans and operational reliability.



Paul Warley, CEO of ASTI, highlighted the suitability of their photovoltaic technology for space applications, emphasizing its durability and lightweight attributes which are critical in harsh orbital environments. “Our technology is designed to deliver sustained power output over time with significantly reduced mass, which is fundamental for successful long-term missions,” said Warley.



This partnership is set to streamline satellite array systems, making prolonged, cost-efficient space missions feasible.


Related Links

Ascent Solar Technologies

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Quantum material achieves up to 190% efficiency in solar cells

Published

on

By

Quantum material achieves up to 190% efficiency in solar cells


Quantum material achieves up to 190% efficiency in solar cells

by Clarence Oxford

Los Angeles CA (SPX) Apr 17, 2024







Researchers from Lehigh University have developed a material that significantly enhances the efficiency of solar panels.

A prototype incorporating this material as the active layer in a solar cell displays an average photovoltaic absorption rate of 80%, a high rate of photoexcited carrier generation, and an external quantum efficiency (EQE) reaching up to 190%. This figure surpasses the theoretical Shockley-Queisser efficiency limit for silicon-based materials, advancing the field of quantum materials for photovoltaics.



This work signifies a major advance in sustainable energy solutions, according to Chinedu Ekuma, professor of physics at Lehigh. He and Lehigh doctoral student Srihari Kastuar recently published their findings in the journal Science Advances. Ekuma highlighted the innovative approaches that could soon redefine solar energy efficiency and accessibility.



The material’s significant efficiency improvement is largely due to its unique intermediate band states, which are energy levels within the material’s electronic structure that are ideally positioned for solar energy conversion.



These states have energy levels in the optimal subband gaps-energy ranges capable of efficiently absorbing sunlight and producing charge carriers-between 0.78 and 1.26 electron volts.



Moreover, the material excels in absorbing high levels in the infrared and visible regions of the electromagnetic spectrum.



In traditional solar cells, the maximum EQE is 100%, which corresponds to the generation and collection of one electron for each photon absorbed. However, newer materials and configurations can generate and collect more than one electron per high-energy photon, achieving an EQE over 100%.



Multiple Exciton Generation (MEG) materials, though not yet widely commercialized, show immense potential for enhancing solar power system efficiency. The Lehigh-developed material utilizes intermediate band states to capture photon energy typically lost in traditional cells, including energy lost through reflection and heat production.



The research team created this novel material using van der Waals gaps, atomically small spaces between layered two-dimensional materials, to confine molecules or ions. Specifically, they inserted zerovalent copper atoms between layers of germanium selenide (GeSe) and tin sulfide (SnS).



Ekuma developed the prototype based on extensive computer modeling that indicated the system’s theoretical potential. Its rapid response and enhanced efficiency strongly indicate the potential of Cu-intercalated GeSe/SnS as a quantum material for advanced photovoltaic applications, offering a path for efficiency improvements in solar energy conversion, he stated.



While the integration of this quantum material into existing solar energy systems requires further research, the techniques used to create these materials are already highly advanced, with scientists mastering precise methods for inserting atoms, ions, and molecules.



Research Report:Chemically Tuned Intermediate Band States in Atomically Thin CuxGeSe/SnS Quantum Material for Photovoltaic Applications


Related Links

Lehigh University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Project receives funding for advanced solar-thermal research

Published

on

By

Project receives funding for advanced solar-thermal research


Project receives funding for advanced solar-thermal research

by Sophie Jenkins

London, UK (SPX) Apr 12, 2024






The University of Surrey, leading a collaboration with the University of Bristol and Northumbria University, has received a GBP 1.1 million grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop solar-thermal devices. These devices aim to revolutionize the way we heat homes and generate power, differing from traditional solar cells by converting sunlight into heat for energy production.

The research focuses on creating surfaces that selectively absorb sunlight and emit heat through near-infrared radiation. This project leverages the combined expertise of the institutions in photonics, advanced materials, applied electromagnetics, and nanofabrication to address a global need for efficient solar energy utilization.



Professor Marian Florescu, Principal Investigator from Surrey, highlighted the importance of the project: “The sun provides an immense amount of energy daily, much more than we currently harness. By advancing these solar-absorbing surfaces, we aim to transform solar energy use into a sustainable powerhouse for our increasing energy needs.”



Goals of the project include developing high-temperature solar absorbers, enhancing the efficiency of solar-absorbing structures, and improving the management of heat generated from sunlight. Prototypes will be constructed to demonstrate these technologies.



Professor Marin Cryan, Co-Principal Investigator from the University of Bristol, explained their focus on thermionic solar cell technology, which uses concentrated sunlight to initiate electron emission for high-efficiency solar cells.



Dr. Daniel Ho, Co-Principal Investigator from Northumbria University, added: “Our university leads in thermophotovoltaic research, utilizing advanced thermal analysis techniques. We’re excited to contribute to groundbreaking developments in renewable energy.”


Related Links

University of Surrey

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.