Solar Energy
Trina Solar leading the compatibility charge in the ultra-high power era
Trina Solar says it is continuing to drive collaboration across the entire value chain to achieve full compatibility with Vertex 210mm silicon wafer modules, designed to enable 600W+ output. Since the launch of Vertex modules a year ago, the range of 210 Vertex compatible solar PV system components continues to expand. Numerous market tests have been completed with compatibility approvals from leading solar inverter and tracker manufacturers, enabling the upgrade in power.
In the race towards a climate-neutral economy in Europe, as set out in the EU Green Deal, Ultra High-Power solar energy systems play a vital role. The market is maturing fast, with Trina Solar at the forefront of production and open, collaborative innovation across the industry chain.
Trina Solar’s creation of three new 210 Vertex super factories in 2020 secures consistent product supply, projected to reach over 50GW globally at the end of 2021. This brings new-found confidence in high-energy solutions to the solar market, and more importantly, strengthens the value proposition of solar energy across utility sector.
The 600W+ Photovoltaic Open Innovation Ecological Alliance
One of Trina Solar’s first initiatives after launching 210mm technology helped to bring together influential solar companies and pledge a commitment to drive ultra-high power capabilities in the industry. The 600W+ Photovoltaic Open Innovation Ecological Alliance, announced in July 2020, is now made up of 66 companies spanning the industry in Europe and globally, across silicon, wafers, batteries, modules, inverters, tracker systems, materials, EPC, design institutes, professional research institutions and owners.
This Alliance aims to create a new collaborative and innovative ecosystem through open collaboration, synergizing the industry chain’s primary resources and integrating core processes such as R and D, manufacturing, and applications.
Member companies adopted a declaration stating they will work together to build products, systems, and standards for a next-generation technology platform, committing to maximizing the customer values of 600W+ Ultra-High Power modules and other related solutions at the application end.
Driving value in the Ultra-High Power Industry chain
Prior to March 2021, leading brands such as Huawei, Sungrow, SMA and Sineng announced the availability or launch timeline of 210 Vertex compatible central and string inverters.
We have also seen eight of the world’s leading photovoltaic tracker makers, Arctech Solar, Array Technologies, GameChange Solar, IDEEMATEC, Nextracker, PVH, Soltec, TrinaTracker, successively issue compatibility approvals for 210 Vertex modules.
These continuous compatibility advances with inverters, trackers and 210 modules raise the total system value and reduce costs in various scenarios. Specifically, low-voltage, high-current Vertex modules can realize a longer string, thereby reducing the number of strings, leading to reduction of BOS components, land and labor used, lowering overall EPC cost and LCOE, highlighting the power generation gain and cost advantages of ultra-high power modules.
An independent DNV GL assessment published in December 2020 calculated significant system advantages of Trina Solar’s bifacial dual-glass 210 Vertex modules. The report showed a reduction of BOS by 6.2% compared with conventional 166mm-450W and 182mm-535W modules in terms of BOS costs and LCOE by 3.72%.
This proactivity within the industry is paying off, demonstrating smooth chain collaboration and proven LCOE reductions, accelerating the entering grid parity era.
Solar Energy
India mandates local-only solar energy components from 2026
India mandates local-only solar energy components from 2026
by AFP Staff Writers
New Delhi (AFP) Dec 10, 2024
Indian clean energy companies will only be able to use solar modules built locally from June 2026, according to a government order apparently aimed at reducing Chinese imports.
Clean energy sector leaders in India, including ventures by conglomerates Reliance Enterprises and Tata Power, rely on Chinese vendors as their major suppliers.
As much as 70 percent of India’s solar power generation capacity is powered by Chinese equipment, according to industry estimates.
Indian companies are already required by law to use locally made solar panels in government projects.
The new rule mandates that only modules made from locally built photovoltaic cells, which convert light energy into electricity, can be used in projects with a bid deadline after Monday’s order.
“This condition will have to be followed irrespective of the date of commissioning,” said the order, issued by India’s renewable energy ministry.
The government is yet to issue the list of approved manufacturers of solar cells because “the installed capacity of solar cells in the country was lower than demand”.
But “with installed capacity of solar cells in the country expected to increase substantially in next year”, a list of approved manufacturers will now be released, the order said.
India’s solar equipment manufacturing space has made rapid strides in recent years.
A report by Bengaluru-based consulting firm Mercom India said the country’s solar panel production was expected to reach 95 gigawatts by the end of 2025.
India added 13.3 gigawatts of solar equipment manufacturing capacity in the first half of 2024, according to the same report.
sai/gle/sn
Related Links
Solar Energy
Existing EV batteries may last significantly longer under real-world conditions
Existing EV batteries may last significantly longer under real-world conditions
by Clarence Oxford
Los Angeles CA (SPX) Dec 10, 2024
Electric vehicle (EV) batteries subjected to typical real-world driving scenarios-such as heavy traffic, urban commutes, and long highway trips-could last up to 40% longer than previously projected, according to new research from the SLAC-Stanford Battery Center, a collaboration between Stanford University’s Precourt Institute for Energy and SLAC National Accelerator Laboratory. This finding suggests EV owners may delay the costly replacement of battery packs or the purchase of new vehicles for several more years than expected.
Traditionally, battery scientists have tested EV batteries in labs using a constant charge-discharge cycle. While effective for quick evaluations of new designs, this method does not accurately reflect the varied usage patterns of everyday drivers, the study published in *Nature Energy* on Dec. 9 reveals.
Although battery costs have fallen by approximately 90% over the past 15 years, they still represent about one-third of an EV’s price. This research could provide reassurance to current and prospective EV owners about the longevity of their vehicle’s batteries.
“We’ve not been testing EV batteries the right way,” said Simona Onori, the study’s senior author and an associate professor at Stanford’s Doerr School of Sustainability. “To our surprise, real driving with frequent acceleration, braking, stopping for errands, and extended rest periods helps batteries last longer than previously thought based on industry-standard tests.”
Real-World Driving Profiles Improve Battery Lifespan
The researchers developed four distinct EV discharge profiles, ranging from constant discharge to dynamic patterns based on actual driving data. Testing 92 commercial lithium-ion batteries over two years, they found that batteries subjected to realistic driving scenarios demonstrated significantly improved longevity.
Machine learning algorithms were crucial in analyzing the extensive data, revealing that certain driving behaviors, like sharp accelerations, slowed battery degradation. This contradicted prior assumptions that acceleration peaks harm EV batteries. “Pressing the pedal hard does not speed up aging. If anything, it slows it down,” explained Alexis Geslin, one of the study’s lead authors and a PhD candidate in materials science and computer science at Stanford.
Aging from Use vs. Time
The study differentiated between battery aging caused by charge-discharge cycles and aging from time alone. While frequent cycling dominates battery aging for commercial vehicles like buses or delivery vans, time-induced aging becomes a larger factor for personal EVs, which are often parked and idle.
“We battery engineers have assumed that cycle aging is much more important than time-induced aging,” said Geslin. “For consumers using their EVs for daily errands but leaving them unused most of the time, time becomes the predominant aging factor.”
The researchers identified an optimal discharge rate balancing both time and cycle aging for the batteries tested, which aligns with typical consumer driving habits. Manufacturers could update battery management software to incorporate these findings, potentially extending battery lifespan under normal conditions.
Implications for the Future
Evaluating new battery chemistries and designs under realistic conditions is critical for future advancements, said Le Xu, a postdoctoral scholar in energy science and engineering. “Researchers can now revisit presumed aging mechanisms at the chemistry, materials, and cell levels to deepen their understanding,” Xu added.
The study’s principles could apply beyond EV batteries to other energy storage systems, plastics, solar cells, and biomaterials where aging is a key concern. “This work highlights the power of integrating multiple areas of expertise-from materials science and modeling to machine learning-to drive innovation,” Onori concluded.
Research Report:Dynamic cycling enhances battery lifetime
Related Links
SLAC-Stanford Battery
Powering The World in the 21st Century at Energy-Daily.com
Solar Energy
So you want to build a solar or wind farm? Here’s how to decide where
So you want to build a solar or wind farm? Here’s how to decide where
by David L. Chandler | MIT News
Boston MA (SPX) Dec 08, 2024
Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.
The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.
The study, appearing in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.
Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”
Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”
Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.
To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions – New England, Texas, and California – analyzing up to 138,271 possible siting locations simultaneously for a single region.
By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”
That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”
In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.
These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.
The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.
Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”
One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.
In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”
The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”
Research Report:Decarbonized energy system planning with high-resolution spatial representation of renewables lowers cost
Related Links
Department of Civil and Environmental Engineering
All About Solar Energy at SolarDaily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Solar Energy1 year ago
Glencore eyes options on battery recycling project
-
Camera1 year ago
Sony a9 III: what you need to know
-
Indian Defense3 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies