Connect with us

Solar Energy

New perovskite fabrication method for solar cells paves way to large-scale production

Published

on

New perovskite fabrication method for solar cells paves way to large-scale production

A new, simpler solution process for fabricating stable perovskite solar cells overcomes the key bottleneck to large-scale production and commercialization of this promising renewable-energy technology, which has remained tantalizingly out of reach for more than a decade.

“”Our work paves the way for low-cost, high-throughput commercial-scale production of large-scale solar modules in the near future,” said Wanyi Nie, a research scientist fellow in the Center of Integrated Nanotechnologies at Los Alamos National Laboratory and corresponding author of the paper, which was published in the journal Joule.

“We were able to demonstrate the approach through two mini-modules that reached champion levels of converting sunlight to power with greatly extended operational lifetimes. Since this process is facile and low cost, we believe it can be easily adapted to scalable fabrication in industrial settings.”

The team invented a one-step spin coating method using sulfolane, a liquid solvent. The new process allowed the team, a collaboration among Los Alamos and researchers from National Taiwan University (NTU), to produce high-yield, large-area photovoltaic devices that are highly efficient in creating power from sunlight. These perovskite solar cells also have a long operational lifetime.

“We are excited about this achievement,” said Prof. Leeyih Wang, the principal investigator of the NTU group and one of the corresponding authors, “this is a new synthetic route that is widely applicable in the rich perovskite material family.” Hsin-Hsiang Huang, a graduate student at NTU and the first author of this paper, said, “We have implemented new chemistry to push it towards a technologically relevant demonstration.”

Perovskite photovoltaics, seen as a viable competitor to the familiar silicon-based photovoltaics on the market for decades, have been a highly anticipated emerging technology over the last decade. Commercialization has been stymied by the lack of a solution to the field’s grand challenge: scaling up production of high-efficiency perovskite solar cell modules from the bench-top to the factory floor.

The research paper shows a new route to fabrication by introducing sulfolane as an additive in the perovskite precursor, or the liquid material that creates the perovskite crystal through a chemical reaction. As in other fabrication methods, that crystal is then deposited on a substrate.

Through a simple dipping method, the team was able to deposit a uniform, high-quality perovskite crystalline thin film covering a large active area in two mini-modules, one of about 16 square centimeters and the other nearly 37 square centimeters. Fabricating uniform thin film across the entire photovoltaic module’s area is essential to device performance.

The mini modules achieved a power conversion efficiency of 17.58% and 16.06%, respectively. Those efficiencies are among the top achievable efficiencies reported to date. The power conversion efficiency is a measure of how effectively sunlight is converted into electricity.

For other perovskite fabrication methods, one of the major roadblocks to industrial-scale fabrication is their narrow processing window, the time during which the film can be laid down on the substrate. To get a uniform crystalline film that’s well bonded to the layer below it, the deposition process has to be strictly controlled within a matter of seconds.

Using sulfolane in the perovskite precursor extends the processing window from 9 seconds to 90 seconds, forming highly crystalline, compact layers over a large area while being less dependent on the processing conditions.

The sulfolane method can be easily adapted to existing industrial fabrication techniques, which helps to pave the path toward commercialization.

A perovskite is any material with a particular crystal structure similar to the mineral perovskite. Perovskites can be engineered and fabricated in extremely thin films, which makes them useful for solar photovoltaic cells.

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

New Layered Perovskite Structure Explored for Enhanced Optical Properties

Published

on

By

New Layered Perovskite Structure Explored for Enhanced Optical Properties


New Layered Perovskite Structure Explored for Enhanced Optical Properties

by Riko Seibo

Tokyo, Japan (SPX) Apr 19, 2024






Perovskites are critically important in the field of materials science due to their distinct and varied properties arising from their unique crystal structure. These properties have potential revolutionary applications in advanced technology areas. A method to harness these properties involves precise manipulation of defects within the perovskite structure, such as missing atoms or substituting one type of atom for another.

In the realm of oxide chemistry, it’s well-established that such defects in oxides can self-organize within the crystal structure when they reach a certain threshold, leading to enhanced material properties. While this phenomenon of defect ordering is well-documented in perovskite oxides, it has not been as prevalent in hybrid halide perovskites, which consist of an organic component, a metal, and a halogen.



A recent study highlighted in ACS Materials Letters reveals findings by Associate Professor Takafumi Yamamoto and his team at Tokyo Institute of Technology, who discovered a novel defect-ordered layered halide perovskite. The research builds on earlier work where the introduction of thiocyanate ions (SCN-) into the FAPbI3 lattice led to structured defect formations. Dr. Yamamoto suggests, “Increasing the SCN concentration might amplify the formation of these defect structures, similar to those observed in vacancy-ordered oxide perovskites.”



The research involved synthesizing FAPbI3 in powder and crystal forms, using specific ratios of SCN-. When a high enough SCN- ratio was used, the resulting perovskite was FA4Pb2I7.5(SCN)0.5. This compound displayed organized defects throughout its layers-more so than its predecessor, FA6Pb4I13.5(SCN)0.5, where fewer defects were organized.



The study identifies this material as part of a ‘homologous series’-a sequence where systematic alterations to the chemical formula yield predictable changes in properties, here observed as variations in the optical bandgap correlated with defect concentration.



“This marks the first instance of a homologous series based on defect ordering in hybrid organic-inorganic perovskites,” notes Dr. Yamamoto. “Our findings set a foundational strategy for manipulating defect structures to adjust the optical properties of perovskites, offering a promising avenue for materials science innovation.”



The implications of this research are significant, potentially paving the way for new perovskite materials with tailored properties for future technological applications.



Research Report:FA4Pb2I7.5(SCN)0.5: n = 3 Member of Perovskite Homologous Series FAn+1Pbn-1I3n-1.5(SCN)0.5 with Organized Defects


Related Links

Tokyo Institute of Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Solar energy adoption challenges in rural Ethiopia

Published

on

By

Solar energy adoption challenges in rural Ethiopia


Solar energy adoption challenges in rural Ethiopia

by Clarence Oxford

Los Angeles CA (SPX) Apr 19, 2024






Despite decreasing costs and increasing accessibility of solar home systems, significant obstacles hinder their widespread use in remote areas of developing countries, such as Ethiopia, where they could greatly improve health and education.

Inexpensive, yet uncertified and inferior solar panels, along with limited government engagement in rural energy transition, impede access to dependable electricity for these communities.



When homes do incorporate solar energy, it replaces harmful kerosene lamps, offering a healthier, eco-friendly alternative and enabling children to study after dark.



“Understanding the dynamics of renewable energy adoption in rural sectors of the Global South is crucial,” said Yujin Lee, a doctoral student at Cornell University’s Department of City and Regional Planning and first author of a related study in Energy Policy.



Chuan Liao, the study’s senior author and assistant professor in the Department of Global Development at Cornell, emphasized, “The global shift to renewable and clean energy sources must include remote and rural populations in the developing world.”



Ethiopia’s national electrification strategy aims to power all homes within 25 kilometers of the grid by 2030. Those further away are slated for long-term off-grid solutions.



However, the prevalence of low-quality solar panels, which often fail and contribute to environmental waste, poses a barrier to adoption. Additionally, the infrequency of government visits to rural, off-grid or road-less villages leads to misinformed policies.



“Government reports often do not reflect the true situation in rural areas,” noted Lee, who found actual solar adoption rates to be markedly lower than official claims.



Lee advocates for increased governmental presence in rural communities, enhanced public engagement in energy management, and improved communication between governments, private sectors, international organizations, and end-users to support sustainable energy solutions.


Related Links

Cornell University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams

Published

on

By

The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams


The role of Floating Solar in achieving Africa’s energy targets as an alternative to dams

by Hugo Ritmico

Madrid, Spain (SPX) Apr 19, 2024






Researchers from Politecnico di Milano have identified floating solar photovoltaics (FPV) as a viable alternative to traditional hydropower in meeting Africa’s energy goals, according to a new study published in Nature Energy. The study shows that FPV installed at existing major reservoirs could generate 20-100% of the electricity projected from planned hydropower dams across Africa.

The research, conducted using a comprehensive energy planning model, reveals that FPV is not only cost-effective compared to other renewable resources but also plays a crucial role in Africa’s energy future. “Floating solar has emerged as cost-competitive and could potentially eliminate the need for many new dams,” stated Wyatt Arnold, the lead author of the study.



A detailed analysis of the transboundary Zambezi watercourse indicated that capital investments for new dams could be more effectively utilized by constructing fewer reservoirs and augmenting them with floating solar panels. This strategy could decrease interannual variability in electricity supply by 12% and enhance resilience against long-term droughts exacerbated by climate change.



“Adopting floating solar can provide developing economies with a stable energy supply less susceptible to hydrological changes,” explained Prof. Andrea Castelletti. “Additionally, it mitigates adverse effects on downstream communities and river ecosystems compared to new dam projects.”



The study also underscores the significance of integrated resource planning and the need to consider transboundary effects in sustainable development. It promotes multisector modeling that integrates energy, agriculture, environmental protection, and economic growth within river basins.



Prof. Matteo Giuliani noted, “The strategic deployment of floating solar might outweigh potential drawbacks on reservoir uses like fishing or recreation. Yet, ongoing enhancements in FPV technology and effective planning are essential for its responsible implementation.”



While floating solar offers substantial environmental benefits, the study acknowledges challenges in technology and social acceptance that may limit its deployment. Nevertheless, these challenges are likely to be less impactful than the negative consequences of new hydropower projects, which can disrupt river ecologies, displace populations, and increase regional conflicts over water use.



Research Report:Floating solar emerges as a sustainable energy solution for Africa’s future


Related Links

Politecnico di Milano

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.