Connect with us

Solar Energy

Tuning electrode surfaces to optimize solar fuel production

Published

on

Tuning electrode surfaces to optimize solar fuel production

Scientists have demonstrated that modifying the topmost layer of atoms on the surface of electrodes can have a remarkable impact on the activity of solar water splitting. As they reported in Nature Energy on Feb. 18, bismuth vanadate electrodes with more bismuth on the surface (relative to vanadium) generate higher amounts of electrical current when they absorb energy from sunlight.

This photocurrent drives the chemical reactions that split water into oxygen and hydrogen. The hydrogen can be stored for later use as a clean fuel. Producing only water when it recombines with oxygen to generate electricity in fuel cells, hydrogen could help us achieve a clean and sustainable energy future.

“The surface termination modifies the system’s interfacial energetics, or how the top layer interacts with the bulk,” said co-corresponding author Mingzhao Liu, a staff scientist in the Interface Science and Catalysis Group of the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory. “A bismuth-terminated surface exhibits a photocurrent that is 50-percent higher than a vanadium-terminated one.”

“”Studying the effects of surface modification with an atomic-level understanding of their origins is extremely challenging, and it requires tightly integrated experimental and theoretical investigations,” said co-corresponding author Giulia Galli from the University of Chicago and DOE’s Argonne National Laboratory.

“It also requires the preparation of high-quality samples with well-defined surfaces and methods to probe the surfaces independently from the bulk,” added co-corresponding author Kyoung-Shin Choi from the University of Wisconsin-Madison.

Choi and Galli, experimental and theoretical leaders in the field of solar fuels, respectively, have been collaborating for several years to design and optimize photoelectrodes for producing solar fuels. Recently, they set out to design strategies to illuminate the effects of electrode surface composition, and, as CFN users, they teamed up with Liu.

“The combination of expertise from the Choi Group in photoelectrochemistry, the Galli Group in theory and computation, and the CFN in material synthesis and characterization was vital to the study’s success,” commented Liu.

Bismuth vanadate is a promising electrode material for solar water splitting because it strongly absorbs sunlight across a range of wavelengths and remains relatively stable in water. Over the past few years, Liu has perfected a method for precisely growing single-crystalline thin films of this material. High-energy laser pulses strike the surface of polycrystalline bismuth vanadate inside a vacuum chamber. The heat from the laser causes the atoms to evaporate and land on the surface of a base material (substrate) to form a thin film.

“To see how different surface terminations affect photoelectrochemical activity, you need to be able to prepare crystalline electrodes with the same orientation and bulk composition,” explained co-author Chenyu Zhou, a graduate researcher from Stony Brook University working with Liu. “You want to compare apples to apples.”

As grown, bismuth vanadate has an almost one-to-one ratio of bismuth to vanadium on the surface, with slightly more vanadium. To create a bismuth-rich surface, the scientists placed one sample in a solution of sodium hydroxide, a strong base.

“Vanadium atoms have a high tendency to be stripped from the surface by this basic solution,” said first author Dongho Lee, a graduate researcher working with Choi. “We optimized the base concentration and sample immersion time to remove only the surface vanadium atoms.”

To confirm that this chemical treatment changed the composition of the top surface layer, the scientists turned to low-energy ion scattering spectroscopy (LEIS) and scanning tunneling microscopy (STM) at the CFN.

In LEIS, electrically charged atoms with low energy – in this case, helium – are directed at the sample. When the helium ions hit the sample surface, they become scattered in a characteristic pattern depending on which atoms are present at the very top. According to the team’s LEIS analysis, the treated surface contained almost entirely bismuth, with an 80-to-20 ratio of bismuth to vanadium.

“Other techniques such as x-ray photoelectron spectroscopy can also tell you what atoms are on the surface, but the signals come from several layers of the surface,” explained Liu. “That’s why LEIS was so critical in this study – it allowed us to probe only the first layer of surface atoms.”

In STM, an electrically conductive tip is scanned very close to the sample surface while the tunneling current flowing between the tip and sample is measured. By combining these measurements, scientists can map the electron density – how electrons are arranged in space – of surface atoms. Comparing the STM images before and after treatment, the team found a clear difference in the patterns of atomic arrangements corresponding to vanadium- and bismuth-rich surfaces, respectively.

“Combining STM and LEIS allowed us to identify the atomic structure and chemical elements on the topmost surface layer of this photoelectrode material,” said co-author Xiao Tong, a staff scientist in the CFN Interface Science and Catalysis Group and manager of the multiprobe surface analysis system used in the experiments. “These experiments demonstrate the power of this system for exploring surface-dominated structure-property relationships in fundamental research applications.”

Simulated STM images based on surface structural models derived from first-principle calculations (those based on the fundamental laws of physics) closely matched the experimental results.

“Our first-principle calculations provided a wealth of information, including the electronic properties of the surface and the exact positions of the atoms,” said co-author and Galli Group postdoctoral fellow Wennie Wang. “This information was critical to interpreting the experimental results.”

After proving that the chemical treatment successfully altered the first layer of atoms, the team compared the light-induced electrochemical behavior of the treated and nontreated samples.

“Our experimental and computational results both indicated that the bismuth-rich surfaces lead to more favorable surface energetics and improved photoelectrochemical properties for water splitting,” said Choi. “Moreover, these surfaces pushed the photovoltage to a higher value.”

Many times, particles of light (photons) do not provide enough energy for water splitting, so an external voltage is needed to help perform the chemistry. From an energy-efficiency perspective, you want to apply as little additional electricity as possible.

“When bismuth vanadate absorbs light, it generates electrons and electron vacancies called holes,” said Liu. “Both of these charge carriers need to have enough energy to do the necessary chemistry for the water-splitting reaction: holes to oxidize water into oxygen gas, and electrons to reduce water into hydrogen gas. While the holes have more than enough energy, the electrons don’t. What we found is that the bismuth-terminated surface lifts the electrons to higher energy, making the reaction easier.”

Because holes can easily recombine with electrons instead of being transferred to water, the team did additional experiments to understand the direct effect of surface terminations on photoelectrochemical properties. They measured the photocurrent of both samples for sulfite oxidation. Sulfite, a compound of sulfur and oxygen, is a “hole scavenger,” meaning it quickly accepts holes before they have a chance to recombine with electrons. In these experiments, the bismuth-terminated surfaces also increased the amount of generated photocurrent.

“It’s important that electrode surfaces perform this chemistry as quickly as possible,” said Liu. “Next, we’ll be exploring how co-catalysts applied on top of the bismuth-rich surfaces can help expedite the delivery of holes to water.”

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Increasing battery and fuel cell power with quantum computing |

Leave a Reply

Solar Energy

A single molecule elevates solar module output and stability

Published

on

By

A single molecule elevates solar module output and stability


A single molecule elevates solar module output and stability

by Sophie Jenkins

London, UK (SPX) Apr 24, 2025






A new molecule developed through international collaboration has been shown to significantly improve both the performance and durability of perovskite solar cells, according to a recent study published in *Science*. The discovery centers on a synthetic ionic salt named CPMAC, which originates from buckminsterfullerene (C60) and has been shown to outperform traditional C60 in solar applications.

Researchers from the King Abdullah University of Science and Technology (KAUST) played a key role in the development of CPMAC. While C60 has long been used in perovskite solar cells due to its favorable electronic properties, it suffers from stability issues caused by weak van der Waals interactions at the interface with the perovskite layer. CPMAC was engineered to address these shortcomings.



“For over a decade, C60 has been an integral component in the development of perovskite solar cells. However, weak interactions at the perovskite/C60 interface lead to mechanical degradation that compromises long-term solar cell stability. To address this limitation, we designed a C60-derived ionic salt, CPMAC, to significantly enhance the stability of the perovskite solar cells,” explained Professor Osman Bakr, Executive Faculty of the KAUST Center of Excellence for Renewable Energy and Sustainable Technologies (CREST).



Unlike C60, CPMAC forms ionic bonds with the perovskite material, strengthening the electron transfer layer and thereby enhancing both structural stability and energy output. Cells incorporating CPMAC demonstrated a 0.6% improvement in power conversion efficiency (PCE) compared to those using C60.



Though the gain in efficiency appears modest, the impact scales up dramatically in real-world energy production. “When we deal with the scale of a typical power station, the additional electricity generated even from a fraction of a percentage point is quite significant,” said Hongwei Zhu, a research scientist at KAUST.



Beyond efficiency gains, CPMAC also enhanced device longevity. Under accelerated aging tests involving high heat and humidity over 2,000 hours, solar cells containing CPMAC retained a significantly higher portion of their efficiency. Specifically, their degradation was one third that observed in cells using conventional C60.



Further performance evaluation involved assembling the cells into four-cell modules, offering a closer approximation to commercial-scale solar panels. These tests reinforced the molecule’s advantage in both durability and output.



The key to CPMAC’s success lies in its capacity to reduce defects within the electron transfer layer, thanks to the formation of robust ionic bonds. This approach circumvents the limitations posed by van der Waals forces typical of unmodified C60 structures.



Research Report:C60-based ionic salt electron shuttle for high-performance inverted perovskite solar modules


Related Links

KAUST Center of Excellence for Renewable Energy and Storage Technologies

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Indonesia says China’s Huayou to replace LGES in EV battery project

Published

on

By

Indonesia says China’s Huayou to replace LGES in EV battery project


Indonesia says China’s Huayou to replace LGES in EV battery project

by AFP Staff Writers

Jakarta (AFP) April 23, 2025






China’s Zhejiang Huayou Cobalt is replacing South Korea’s LG Energy Solution as a strategic investor in a multibillion-dollar project to build an electric vehicle battery joint venture in Indonesia, officials said on Wednesday.

The South Korean company, which was part of a consortium that signed a 142 trillion rupiah ($8.4 billion) “Grand Project” in 2020, announced its withdrawal from the project this week, citing factors including market conditions and the investment environment.

Energy and Mineral Resources Minister Bahlil Lahadalia said LG Energy Solution’s decision would not significantly affect the project, which aims to establish a local electric vehicle battery value chain in Indonesia.

“Changes only occur at the investor level, where LG no longer continue its involvement… and has been replaced by a strategic partner from China, namely Huayou,” Bahlil said in a statement.

“Nothing has changed from the initial goal, namely making Indonesia as the center of the world’s electric vehicle industry.”

Indonesia, home to the world’s largest nickel reserve, has been seeking to position itself as a key player in the global electric vehicle supply chain by leveraging its vast reserve of the critical mineral to attract investments.

The government decided not to move forward with the South Korean company in the project due to the long negotiation process with the firm to realise its investment, Investment Minister Rosan Roeslani said.

Rosan cited Huayou’s familiarity with Indonesia as one of the reasons why the government chose the company to succeed LG Energy Solution.

“Huayou had invested in Indonesia,” Rosan said.

“They have sources to develop the industry going forward.”

LG Energy Solution said in a statement on Tuesday that it will continue to explore “various avenues of collaboration” with the Indonesian government, including in its battery joint venture.

HLI Green Power, a joint venture between LG Energy Solution and Hyundai Motor Group, operates Indonesia’s first electric vehicle battery plant, which was launched in 2024 with a production capacity of up to 10 Gigawatt hours (GWh) of cells annually.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Politecnico di Milano explores global potential of agrivoltaics for land use harmony

Published

on

By

A single molecule elevates solar module output and stability


Politecnico di Milano explores global potential of agrivoltaics for land use harmony

by Erica Marchand

Paris, France (SPX) Apr 23, 2025






A research team from the Politecnico di Milano has presented new insights into how agrivoltaic systems could resolve growing tensions over land use between agricultural production and solar energy development. Led by Maddalena Curioni, Nikolas Galli, Giampaolo Manzolini, and Maria Cristina Rulli, the study demonstrates that integrating photovoltaic panels with crop cultivation can significantly mitigate land-use conflict while maintaining food output.

Published in the journal Earth’s Future, the study highlights that between 13% and 16% of existing ground-mounted solar installations have displaced former farmland, underscoring the competition for arable land. In contrast, the researchers propose that deploying agrivoltaic systems on between 22% and 35% of non-irrigated agricultural land could enable dual use without substantially affecting crop yields.



Using a spatial agro-hydrological model, the researchers simulated how 22 crop types respond to varying degrees of solar shading from photovoltaic panels. Their simulations covered a broad range of climates and geographies, generating a global suitability map for agrivoltaic deployment. The results underscore the feasibility of this approach in many regions, especially those with compatible crops and moderate solar intensity.



“Agrivoltaics cannot be applied everywhere, but according to our results, it would be possible to combine cultivation and energy production in many areas of the world without significant reductions in yield,” said Nikolas Galli, researcher at the Glob3Science Lab and co-author of the study.



Giampaolo Manzolini, professor in the Department of Energy, noted additional benefits: “Using the land for both cultivation and photovoltaic systems increases overall output per occupied surface area while reducing production costs. In addition, installing crops underneath the photovoltaic panels reduces the panel operating temperature and increases their efficiency.”



“This technology could help reduce land competition while improving the sustainability of agricultural and energy systems,” added Maria Cristina Rulli, who coordinated the research.



The team emphasizes that their findings could inform strategic policy decisions and investment strategies aimed at maximizing land productivity while supporting both food security and renewable energy goals.



Research Report:Global Land-Water Competition and Synergy Between Solar Energy and Agriculture


Related Links

Politecnico di Milano

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending