Connect with us

TOP SCEINCE

Wireless receiver blocks interference for better mobile device performance

Published

on

Wireless receiver blocks interference for better mobile device performance


The growing prevalence of high-speed wireless communication devices, from 5G mobile phones to sensors for autonomous vehicles, is leading to increasingly crowded airwaves. This makes the ability to block interfering signals that can hamper device performance an even more important — and more challenging — problem.

With these and other emerging applications in mind, MIT researchers demonstrated a new millimeter-wave multiple-input-multiple-output (MIMO) wireless receiver architecture that can handle stronger spatial interference than previous designs. MIMO systems have multiple antennas, enabling them to transmit and receive signals from different directions. Their wireless receiver senses and blocks spatial interference at the earliest opportunity, before unwanted signals have been amplified, which improves performance.

Key to this MIMO receiver architecture is a special circuit that can target and cancel out unwanted signals, known as a nonreciprocal phase shifter. By making a novel phase shifter structure that is reconfigurable, low-power, and compact, the researchers show how it can be used to cancel out interference earlier in the receiver chain.

Their receiver can block up to four times more interference than some similar devices. In addition, the interference-blocking components can be switched on and off as needed to conserve energy.

In a mobile phone, such a receiver could help mitigate signal quality issues that can lead to slow and choppy Zoom calling or video streaming.

“There is already a lot of utilization happening in the frequency ranges we are trying to use for new 5G and 6G systems. So, anything new we are trying to add should already have these interference-mitigation systems installed. Here, we’ve shown that using a nonreciprocal phase shifter in this new architecture gives us better performance. This is quite significant, especially since we are using the same integrated platform as everyone else,” says Negar Reiskarimian, the X-Window Consortium Career Development Assistant Professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the Microsystems Technology Laboratories and Research Laboratory of Electronics (RLE), and the senior author of a paper on this receiver.

Reiskarimian wrote the paper with EECS graduate students Shahabeddin Mohin, who is the lead author, Soroush Araei, and Mohammad Barzgari, an RLE postdoc. The work was recently presented at the IEEE Radio Frequency Circuits Symposium and received the Best Student Paper Award.

Blocking interference

Digital MIMO systems have an analog and a digital portion. The analog portion uses antennas to receive signals, which are amplified, down-converted, and passed through an analog-to-digital converter before being processed in the digital domain of the device. In this case, digital beamforming is required to retrieve the desired signal.

But if a strong, interfering signal coming from a different direction hits the receiver at the same time as a desired signal, it can saturate the amplifier so the desired signal is drowned out. Digital MIMOs can filter out unwanted signals, but this filtering occurs later in the receiver chain. If the interference is amplified along with the desired signal, it is more difficult to filter out later.

“The output of the initial low-noise amplifier is the first place you can do this filtering with minimal penalty, so that is exactly what we are doing with our approach,” Reiskarimian says.

The researchers built and installed four nonreciprocal phase shifters immediately at the output of the first amplifier in each receiver chain, all connected to the same node. These phase shifters can pass signal in both directions and sense the angle of an incoming interfering signal. The devices can adjust their phase until they cancel out the interference.

The phase of these devices can be precisely tuned, so they can sense and cancel an unwanted signal before it passes to the rest of the receiver, blocking interference before it affects any other parts of the receiver. In addition, the phase shifters can follow signals to continue blocking interference if it changes location.

“If you start getting disconnected or your signal quality goes down, you can turn this on and mitigate that interference on the fly. Because ours is a parallel approach, you can turn it on and off with minimal effect on the performance of the receiver itself,” Reiskarimian adds.

A compact device

In addition to making their novel phase shifter architecture tunable, the researchers designed them to use less space on the chip and consume less power than typical nonreciprocal phase shifters.

Once the researchers had done the analysis to show their idea would work, their biggest challenge was translating the theory into a circuit that achieved their performance goals. At the same time, the receiver had to meet strict size restrictions and a tight power budget, or it wouldn’t be useful in real-world devices.

In the end, the team demonstrated a compact MIMO architecture on a 3.2-square-millimeter chip that could block signals which were up to four times stronger than what other devices could handle. Simpler than typical designs, their phase shifter architecture is also more energy efficient.

Moving forward, the researchers want to scale up their device to larger systems, as well as enable it to perform in the new frequency ranges utilized by 6G wireless devices. These frequency ranges are prone to powerful interference from satellites. In addition, they would like to adapt nonreciprocal phase shifters to other applications.

This research was supported, in part, by the MIT Center for Integrated Circuits and Systems.



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors

Published

on

By

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors


A research effort led by scientists at the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) has made advances that could enable a broader range of currently unimagined optoelectronic devices.

The researchers, whose previous innovation included incorporating a perovskite layer that allowed the creation of a new type of polarized light-emitting diode (LED) that emits spin-controlled photons at room temperature without the use of magnetic fields or ferromagnetic contacts, now have gone a step further by integrating a III-V semiconductor optoelectronic structure with a chiral halide perovskite semiconductor. That is, they transformed an existing commercialized LED into one that also controls the spin of electrons. The results provide a pathway toward transforming modern optoelectronics, a field that relies on the control of light and encompasses LEDs, solar cells, and telecommunications lasers, among other devices.

“It’s up to one’s imagination where this might go or where this might end up,” said Matthew Beard, a senior research fellow at NREL and coauthor of the newly published Nature article, “Room temperature spin injection across a chiral-perovskite/III-V interface.”

Beard also serves as director of the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Science Basic Energy Sciences within DOE. The reported research was funded by CHOISE and relied on a broad range of scientific expertise drawn from NREL, the Colorado School of Mines, University of Utah, University of Colorado Boulder, and the Universite de Lorraine in France.

The goal of CHOISE is to understand control over the interconversion of charge, spin, and light using carefully designed chemical systems. In particular, the work focuses on control over the electron spin that can be either “up” or “down.” Most current-day optoelectronic devices rely on the interconversion between charge and light. However, spin is another property of electrons, and control over the spin could enable a wide plethora of new effects and functionality. The researchers published a paper in 2021 in which they reported how by using two different perovskite layers they were able to control the spin by creating a filter that blocks electrons “spinning” in the wrong direction.

They hypothesized at the time that advancements could be made in optoelectronics if they could successfully incorporate the two semiconductors, and then went on to do just that. The breakthroughs made, which include eliminating the need for subzero Celsius temperatures, can be used to increase data processing speeds and decrease the amount of power needed.

“Most current-day technologies are all based on controlling charge,” Beard said. “Most people just forget about the electron spin, but spin is very important, and it’s also another parameter that one can control and utilize.”

Manipulating the spin of electrons in a semiconductor has previously required the use of ferromagnetic contacts under an applied magnetic field. Using chiral perovskites, the researchers were able to transform an LED to one that emits polarized light at room temperature and without a magnetic field. Chirality refers to the material’s structure that cannot be superimposed on its mirror image, such as a hand. For example, a “left-handed” oriented chiral system may allow transport of electrons with “up” spins but block electrons with “down” spins, and vice versa. The spin of the electron is then converted to the “spin,” or polarization, of the emitted light. The degree of polarization, which measures the intensity of light that is polarized in one direction, reached about 2.6% in the previous research. The addition of the III-V semiconductor — which is made of materials in the third and fifth columns of the periodic table — boosted the polarization to about 15%. The degree of polarization serves as a direct measure of spin accumulation in the LED.

“This work is particularly exciting to me, as it combines spin functionality with a traditional LED platform,” said the first author of the work, Matthew Hautzinger. “You can buy an LED analogous to what we used for 14 cents, but with the chiral perovskite incorporated, we’ve transformed an already robust (and well understood) technology into a futuristic spin-control device.”



Source link

Continue Reading

TOP SCEINCE

Crucial gaps in climate risk assessment methods

Published

on

By

Crucial gaps in climate risk assessment methods


A study by Stefano Battiston of the Department of Finance at the University of Zurich and his co-authors has identified critical shortcomings in the way climate-related risks to corporate assets are currently assessed. Many current estimates of climate physical climate risk rely on simplified and proxy data that do not accurately represent a company’s true risk exposure. This can lead to significant underestimates of climate-related losses, with serious implications for business investment planning, asset valuation and climate adaptation efforts.

Potential losses up to 70% higher than previously estimated

The research team developed a new methodology that uses detailed information about the location and characteristics of a company’s physical assets, such as factories, equipment and natural resources. This approach provides a more accurate picture of climate risks than methods that use proxy data, which often assume that all of a company’s assets are located at its headquarters. “When we compared our results with those using proxy data, we found that the potential losses from climate risks could be up to 70% higher than previously thought,” says Stefano Battiston. “This underscores the critical need for more granular data in risk assessments.”

Preparing for the worst: The role of extreme events

The authors also point to the importance of considering “tail risk” in climate assessments. Tail risk refers to the possibility of extreme events that, while rare, can have catastrophic impacts. “Many assessments focus on average impacts. Our research shows that the potential losses from extreme events can be up to 98% higher than these averages suggest,” says Stefano Battiston. “Failure to account for these possibilities can leave businesses and investors dangerously unprepared.”

More funding for climate adaptation

The study’s findings have significant implications for climate policy, business strategy, and investment decisions. The researchers emphasize that more accurate risk assessments are crucial for developing effective climate adaptation strategies and determining appropriate levels of climate-related insurance and funding. “Our work shows that we may be seriously underestimating the financial resources needed for climate adaptation,” concludes Stefano Battiston.



Source link

Continue Reading

TOP SCEINCE

Neutrons on classically inexplicable paths

Published

on

By

Neutrons on classically inexplicable paths


Can a particle be in two different places at the same time? In quantum physics, it can: Quantum theory allows objects to be in different states at the same time — or more precisely: in a superposition state, combining different observable states. But is this really the case? Perhaps the particle is actually in a very specific state, at a very specific location, but we just don’t know it?

The question of whether the behaviour of quantum objects could perhaps be described by a simple, more classical theory has been discussed for decades. In 1985, a way of measuring this was proposed: the so-called “Leggett-Garg inequality.” Any theory that describes our world without the strange superposition states of quantum theory must obey this inequality. Quantum theory, on the other hand, violates it. Measurements with neutrons testing this “Leggett-Garg inequality” have now been carried out for the first time at TU Wien — with a clear result: the Leggett-Garg inequality is violated, classical explanations are not possible, quantum theory wins. The results have now been published in the journal Physical Review Letters.

Physical realism

We normally assume that every object has certain properties: A ball is at a certain location, it has a certain speed, perhaps also a certain rotation. It doesn’t matter whether we observe the ball or not. It has these properties quite objectively and independently of us. “This view is known as ‘realism’,” says Stephan Sponar from the Atomic Institute at TU Wien.

We know from our everyday experience that large, macroscopic objects in particular must obey this rule. We also know that Macroscopic objects can be observed without being influenced significantly. The measurement does not fundamentally change the state. These assumptions are collectively referred to as “macroscopic realism.”

However, quantum theory as we know it today is a theory that violates this macroscopic realism. If different states are possible for a quantum particle, for example different positions, speeds or energy values, then any combination of these states is also possible. At least as long as this state is not measured. During a measurement, the superposition state is destroyed: the measurement forces the particle to decide in favour of one of the possible values.

The Leggett-Garg inequality

Nevertheless, the quantum world must be logically connected to the macroscopic world — after all, large things are made up of small quantum particles. In principle, the rules of quantum theory should apply to everything.

So the question is: Is it possible to observe behaviour in “large” objects that cannot be reconciled with our intuitive picture of macroscopic realism? Can macroscopic things also show clear signs of quantum properties?

In 1985, physicists Anthony James Leggett and Anupam Garg published a formula with which macroscopic realism can be tested: The Leggett-Garg Inequality. “The idea behind it is similar to the more famous Bell’s inequality, for which the Nobel Prize in Physics was awarded in 2022,” says Elisabeth Kreuzgruber, first author of the paper. “However, Bell’s inequality is about the question of how strongly the behaviour of a particle is related to another quantum entangled particle. The Leggett-Garg inequality is only about one single object and asks the question: how its state at specific points in time related to the state of the same object at other specific points in time?”

Stronger correlations than classical physics allows

Leggett and Garg assumed an object that can be measured at three different times, each measurement can have two different results. Even if we know nothing at all about whether or how the state of this object changes over time, we can still statistically analyse how strongly the results at different points in time correlate with each other.

It can be shown mathematically that the strength of these correlations can never exceed a certain level — assuming that macroscopic realism is correct. Leggett and Garg were able to establish an inequality that must always be fulfilled by every macroscopic realistic theory, regardless of any details of the theory.

However, if the object adheres to the rules of quantum theory, then there must be significantly stronger statistical correlations between the measurement results at the three different points in time. If an object is actually in different states at the same time between the measurement times, this must — according to Leggett and Garg — lead to stronger correlations between the three measurements.

Neutron beams: Centimetre-sized quantum objects

“However, it is not so easy to investigate this question experimentally,” says Richard Wagner. “If we want to test macroscopic realism, then we need an object that is macroscopic in a certain sense, i.e. that has a size comparable to the size of our usual everyday objects.” At the same time, however, it must be an object that has a chance of still showing quantum properties.

“Neutron beams, as we use them in a neutron interferometer, are perfect for this,” says Hartmut Lemmel, instrument responsible at the S18 instrument at the Institut Laue-Langevin (ILL) in Grenoble, where the experiment was conducted. In the neutron interferometer, a silicon perfect crystal interferometer that was first successfully used at the Atomic Institute of TU Wien in the early 1970s, the incident neutron beam is split into two partial beams at the first crystal plate and then recombined by another piece of silicon. There are therefore two different ways in which neutrons can travel from the source to the detector.

“Quantum theory says that every single neutron travels on both paths at the same time,” says Niels Geerits. “However, the two partial beams are several centimetres apart. In a sense, we are dealing with a quantum object that is huge by quantum standards.”

Using a sophisticated combination of several neutron measurements, the team at TU Wien was able to test the Leggett-Garg inequality — and the result was clear: the inequality is violated. The neutrons behave in a way that cannot be explained by any conceivable macroscopically realistic theory. They actually travel on two paths at the same time, they are simultaneously located at different places, centimetres apart. The idea that “maybe the neutron is only travelling on one of the two paths, we just don’t know which one” has thus been refuted.

“Our experiment shows: Nature really is as strange as quantum theory claims,” says Stephan Sponar. “No matter which classical, macroscopically realistic theory you come up with: It will never be able to explain reality. It doesn’t work without quantum physics.”



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.