Connect with us

TOP SCEINCE

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?

Published

on

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?


Findings published in Nature by a team of Brown-led researchers challenge traditional beliefs about the cause of earthquakes and suggest that it depends not on friction, but on the ways faults are aligned.

By taking a close look at the geometrical makeup of rocks where earthquakes originate, researchers at Brown University are adding a new wrinkle to a long-held belief about what causes seismic quakes in the first place.

The work, described in the journal Nature, reveals that the way fault networks are aligned plays a critical role in determining where an earthquake will happen and its strength. The findings challenge the more traditional notion that it is primarily the type of friction happening at these faults that governs whether earthquakes happen or not, and they could improve current understandings of how earthquakes work.

“Our paper paints this very different sort of picture about why earthquakes happen,” said Brown geophysicist Victor Tsai, one of the paper’s lead authors. “And this has very important implications for where to expect earthquakes versus where to not expect earthquakes, as well as for predicting where the most damaging earthquakes will be.”

Fault lines are the visible boundaries on the planet’s surface where the rigid plates that make up the Earth’s lithosphere brush against each another. Tsai says that for decades, geophysicists have explained earthquakes as happening when stress at faults builds up to the point where the faults rapidly slip or break past each other, releasing pent-up pressure in an action known as stick-slip behavior.

Researchers theorized that the rapid slip and intense ground motions that follow are a result of unstable friction that can happen at the faults. In contrast, the thought is that when friction is stable, the plates then slide against each other slowly without an earthquake. This steady and smooth movement is also known as creep.

“People have been trying to measure these frictional properties, like whether the fault zone has unstable friction or stable friction and then, based on laboratory measurements of that, they try to predict if are you going to have an earthquake there or not,” Tsai said. “Our findings suggest that it might be more relevant to look at the geometry of the faults in these fault networks, because it may be the complex geometry of the structures around those boundaries that creates this unstable versus stable behavior.”

The geometry to consider includes complexities in the underlying rock structures such as bends, gaps and stepovers. The study is based on mathematical modeling and studying fault zones in California using data from the U.S. Geological Survey’s Quaternary Fault Database and from the California Geological Survey.

The research team, which also includes Brown graduate student Jaeseok Lee and Brown geophysicist Greg Hirth, offer a more detailed example to illustrate how earthquakes happen. They say to picture the faults that brush up against each other as having serrated teeth like the edge of a saw. When there are fewer teeth or teeth that are not as sharp, the rocks slide past each other more smoothly, allowing for creep. But when the rock structures in these faults are more complex and jagged, these structures catch on to one another and get stuck. When that happens, they build up pressure and eventually as they pull and push harder and harder, they break, jerking away from each other and leading to earthquakes.

The new study builds on previous work looking at why some earthquakes generate more ground motion compared to other earthquakes in different parts of the world, sometimes even those of similar magnitude. The study showed that blocks colliding inside a fault zone as an earthquake happens contributes significantly to the generation of high-frequency vibrations and sparked the notion that maybe geometrical complexity beneath the surface was also playing a role in where and why earthquakes happen.

Analyzing data from faults in California — which include the well-known San Andreas fault — the researchers found that fault zones that have complex geometry underneath, meaning the structures there weren’t as aligned, turned out to have stronger ground motions than less geometrically complex fault zones. This also means some of these zones would have stronger earthquakes, others would have weaker ones, and some would have no earthquakes.

The researchers determined this based on the average misalignment of the faults they analyzed. This misalignment ratio measures how closely the faults in a certain region are aligned and all going in the same direction versus going in many different directions. The analysis revealed that fault zones where the faults are more misaligned causes stick-slip episodes in the form of earthquakes. Fault zones where the geometry of the faults were more aligned facilitated smooth fault creep with no earthquakes.

“Understanding how faults behave as a system is essential to grasp why and how earthquakes happen,” said Lee, the graduate student who led the work. “Our research indicates that the complexity of fault network geometry is the key factor and establishes meaningful connections between sets of independent observations and integrates them into a novel framework.”

The researchers say more work needs to be done to fully validate the model, but this initial work suggests the idea is promising, especially because the alignment or misalignment of faults is easier to measure than fault frictional properties. If valid, the work can one day be weaved into earthquake prediction models.

That remains far off for now as the researchers begin to outline how to build upon the study.

“The most obvious thing that comes next is trying to go beyond California and see how this model holds up,” Tsai said. “This is potentially a new way of understanding how earthquakes happen.”



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Early dark energy could resolve cosmology’s two biggest puzzles

Published

on

By

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?


A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.

One puzzle in question is the “Hubble tension,” which refers to a mismatch in measurements of how fast the universe is expanding. The other involves observations of numerous early, bright galaxies that existed at a time when the early universe should have been much less populated.

Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.

Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.

The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.

You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”

The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.

Big city lights

Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.

But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.

“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”

For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.

Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.

Galaxy skeleton

The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.

“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”

The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.

Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.

The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.

“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”

“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”

We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”

This research was supported, in part, by NASA and the National Science Foundation.



Source link

Continue Reading

TOP SCEINCE

Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions

Published

on

By

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?


A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.

It is well known that plants release volatile organic compounds (VOCs) into the atmosphere when damaged by herbivores. These VOCs play a crucial role in plant-plant interactions, whereby undamaged plants may detect warning signals from their damaged neighbours and prepare their defences. “Reactive plant VOCs undergo oxidative chemical reactions, resulting in the formation of secondary organic aerosols (SOAs). We wondered whether the ecological functions mediated by VOCs persist after they are oxidated to form SOAs,” said Dr. Hao Yu, formerly a PhD student at UEF, but now at the University of Bern.

The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.

“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.

“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.

The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.



Source link

Continue Reading

TOP SCEINCE

Folded or cut, this lithium-sulfur battery keeps going

Published

on

By

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?


Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.

Sulfur has been suggested as a material for lithium-ion batteries because of its low cost and potential to hold more energy than lithium-metal oxides and other materials used in traditional ion-based versions. To make Li-S batteries stable at high temperatures, researchers have previously proposed using a carbonate-based electrolyte to separate the two electrodes (an iron sulfide cathode and a lithium metal-containing anode). However, as the sulfide in the cathode dissolves into the electrolyte, it forms an impenetrable precipitate, causing the cell to quickly lose capacity. Liping Wang and colleagues wondered if they could add a layer between the cathode and electrolyte to reduce this corrosion without reducing functionality and rechargeability.

The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.

After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.

The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.



Source link

Continue Reading

Trending