TOP SCEINCE
Complete Stellar Collapse: Unusual star system proves that stars can die quietly

University of Copenhagen astrophysicists help explain a mysterious phenomenon, whereby stars suddenly vanish from the night sky. Their study of an unusual binary star system has resulted in convincing evidence that massive stars can completely collapse and become black holes without a supernova explosion.
However, if the Sun were of a weight class roughly eight times greater or more, it would probably go out with a huge bang — as a supernova. Its collapse would culminate into an explosion, ejecting energy and mass into space with enormous force, prior to leaving behind a neutron star or a black hole in its wake.
While this is basic knowledge about how massive stars die, there remains plenty to understand about the starry skies above and the spectacular death of these stars in particular.
New research by astrophysicists at the University of Copenhagen’s Niels Bohr Institute presents the strongest evidence to date that very massive stars can succumb with far more stealth and discretion than as supernovae. Indeed, their investigation suggests that, with enough mass, a star’s gravitational pull can be so strong that no explosion takes place upon its death. Instead, the star can go through what is known as a complete collapse.
“We believe that the core of a star can collapse under its own weight, as happens to massive stars in the final phase of their lives. But instead of the contraction culminating into a bright supernova explosion that would outshine its own galaxy, expected for stars more than eight times as massive as the Sun, the collapse continues until the star becomes a black hole,” explains first author Alejandro Vigna-Gómez, who was a postdoc at the Niels Bohr Institute when this study set in motion.
This discovery is linked to the phenomenon of disappearing stars, which has interested astronomers in recent years, and it may provide both a clear-cut example as well as a plausible scientific explanation for phenomena of this kind.
“Were one to stand gazing up at a visible star going through a total collapse, it might, just at the right time, be like watching a star suddenly extinguish and disappear from the heavens. The collapse is so complete that no explosion occurs, nothing escapes and one wouldn’t see any brigh tsupernova in the night sky. Astronomers have actually observed the sudden disappearance of brightly shining stars in recent times. We cannot be sure of a connection, but the results we have obtained from analysing VFTS 243 has brought us much closer to a credible explanation,” says Alejandro Vigna-Gómez.
An unusual star system with no signs of an explosion
This discovery has been prompted by the recent observationof an unusual binary star system at the edge of our galaxy called VFTS 243. Here, a large star and black hole roughly 10 times more massive than our Sun orbit one another.
Scientists have known about the existence of such binary star systems in the Milky Way for decades, where one of the stars has become a black hole. But the recent discovery of VFTS 243, just beyond the Milky Way in the Large Magellanic Cloud, is something truly special.
“Normally, supernova events in star systems can be measured in various ways after they occur. But despite the fact that VFTS 243 contains a star that has collapsed into a black hole, the traces of an explosion are nowhere to be found. VFTS 243 is an extraordinary system. The orbit of the system has barely changed since the collapse of the star into a black hole,” says Alejandro Vigna-Gómez.
The researchers have analysed the observational data for a range of signs that would be expected from a star system having undergone a supernova-explosion in the past. Generally, they found evidence of such an event minor and unconvincing.
The system does not show sign of a significant “natal kick,” an acceleration of the orbiting objects. It is also very symmetrical, almost perfectly circular in it’s orbit, and remaining signs from the energy release during the core collapse of the former star points to a type of energy consistent with complete collapse.
“Our analysis unequivocally points to the fact that the black hole in VFTS 243 was most likely formed immediately, with the energy mainly being lost via neutrinos,” says Professor Irene Tamborra from the Niels Bohr Institute, who also participated in the study.
A benchmark system for future studies
According to Professor Tamborra, the VFTS 243 system opens the possibility for finally comparing a range of astrophysics theories and model calculations with actual observations. She expects that the star system will be important for studying stellar evolution and collapse.
“Our results highlight VFTS 243 as the best observable case so far for the theory of stellar black holes formed through total collapse, where the supernova explosion fails and which our models have shown to be possible. It is an important reality check for these models. And we certainly expect that the system will serve as a crucial benchmark for future research into stellar evolution and collapse,” says the professor.
Background Information
The missing “natal kick” and other (lacking) signs of a supernova
The violent forces of a supernova directly affect the newborn neutron stars or black holes left by it, because of the asymmetric emission of matter during the explosion. This is what the researchers refer to as a “natal kick.”This kick causes the compact object to accelerate. A natal kick will normally give neutron stars a measurable speed of 100-1000 km per second. The speed is expected to be less for black holes, but still significant.
Because the black hole in the VFTS 243 system only appears to have been acceleratedto roughly 4 km/s, it shows no sign of having received a substantial natal kick, like would be expected had it undergone a supernova.
Similarly, the symmetry of a star system’s orbit usually show signs that it has felt the impact of a violent supernova explosion, because of the ejection of matter that happens. Instead, the researchers found symmetry.
“The orbit of VFTS is almost circular and our analysis indicates there are no signs of large asymmetries during collapse. This again indicates the absence of an explosion,” says Alejandro Vigna Gomez.
A burst of energy
Analysing the orbit of the binary star system, the team has also been able to calculate the amount of mass and energy released during the formation of the black hole.
Their estimations are consistent with a scenario in which the smaller kick imparted during the stellar collapse was not due to baryonic matter, which includes neutrons and protons, rather to so-called neutrinos. Neutrinos have very little mass and interact very weakly. This is another indication that the system did not experience an explosion.
Black holes
Not even light can escape from black holes. As such, they cannot be observed directly. However, some black holes can be identified due to the large amounts of energy being emitted from the gases rotating around them. Others, as in the case of VFTS 243, can be observed by the influence they have on stars with which they orbit.
In general, astronomers believe there to be three types of black holes:
Stellar black holes — such as those of the VFTS 243 system — form when stars with more than eight times the mass of the Sun collapse. Scientists believe there may be as many as 100 million of these in our galaxy alone.
Supermassive black holes — 100,000 — 10 billion times the mass of the Sun — are thought to be at the centre of nearly all galaxies. Sagittarius A* is the supermassive black hole at centre of our galaxy, the Milky Way.
Intermediate-mass black holes (IMBH) — 100-100,000 times the mass of our Sun — were long a missing link. In recent years, a number of credible candidates have emerged.
There are also theories that describe other types of black holes, which have yet to be discovered. One of these, so-called Primordial black holes, are supposed to have formed in the early universe and could theoretically be microscopic.
Disappearing stars
In modern times, there have been many observations of stars that inexplicably disappear.
“A Survey about Nothing” led by astrophysicist Chris Kochanek is an example of the research efforts actively looking for disappearing stars and explanations for their disappearance.
The curious reader can also delve into historical descriptions. These often have to do with suddenly luminous stars that disappear consistent with supernova scenarios. But there are other stories about suddenly disappearing stars, such as the Greek myth associated with the Pleiades star cluster, commonly known as the Seven Sisters. The Pleiades myth describes the seven daughters of the titan Atlas and nymph Pleione. According to the myth, one of their daughters married a human and went into hiding, which provides a very unscientific, but beautiful explanation for why we only see six stars in the Pleiades.
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles

A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions

A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going

Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
TOP SCEINCE8 months ago
Searching old stem cells that stay young forever
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news5 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
world news5 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
-
Camera1 year ago
Sony a9 III: what you need to know
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens