Connect with us

TOP SCEINCE

Florida fossil porcupine solves a prickly dilemma 10-million years in the making

Published

on

Florida fossil porcupine solves a prickly dilemma 10-million years in the making


There’s a longstanding debate simmering among biologists who study porcupines. There are 16 porcupine species in Central and South America, but only one in the United States and Canada. DNA evidence suggests North America’s sole porcupine belongs to a group that originated 10 million years ago, but fossils seem to tell a different story. Some paleontologists think they may have evolved just 2.5 million years ago, at the beginning of the ice ages.

A new study published in the journal Current Biology claims to have reconciled the dispute, thanks to an exceptionally rare, nearly complete porcupine skeleton discovered in Florida. The authors reached their conclusion by studying key differences in bone structure between North and South American porcupines, but getting there wasn’t easy. It took an entire class of graduate and undergraduate students and several years of careful preparation and study.

“Even for a seasoned curator with all the necessary expertise, it takes an incredible amount of time to fully study and process an entire skeleton,” said lead author Natasha Vitek. While studying as a doctoral student at the Florida Museum of Natural History, Vitek teamed up with vertebrate paleontology curator Jonathan Bloch to create a college course in which students got hands-on research experience by studying porcupine fossils.

Ancient radiation gave rise to world’s largest rodents

Porcupines are a type of rodent, and their ancestors likely originated in Africa more than 30 million years ago. Their descendants have since wandered into Asia and parts of Europe by land, but their journey to South America is a particularly defining event in the history of mammals. They crossed the Atlantic Ocean — likely by rafting — when Africa and South America were much closer together than they are today. They were the first rodents to ever set foot on the continent, where they evolved into well-known groups like guinea pigs, chinchillas, capybaras and porcupines.

Some took on giant proportions. There were lumbering, rat-like animals up to five feet long, equipped with a tiny brain that weighed less than a plum. Extinct relatives of the capybara grew to the size of cows.

Porcupines remained relatively small and evolved adaptations for life in the treetops of South America’s lush rainforests. Today, they travel through the canopy with the aid of long fingers capped with blunt, sickle-shaped claws perfectly angled for gripping branches. Many also have long, prehensile tails capable of bearing their weight, which they use while climbing and reaching for fruit.

Despite their excellent track record of getting around, South America was a dead end for many millions of years. A vast seaway with swift currents separated North and South America, and most animals were unable to cross — with a few notable exceptions.

Beginning about 5 million years ago, the Isthmus of Panama rose above sea level, cutting off the Pacific from the Atlantic. This land bridge became the ancient equivalent of a congested highway a few million years later, with traffic flowing in both directions.

Prehistoric elephants, saber-toothed cats, jaguars, llamas, peccaries, deer, skunks and bears streamed from North America to South. The reverse trek was made by four different kinds of ground sloths, oversized armadillos, terror birds, capybaras and even a marsupial.

The two groups met with radically different fates. Those mammals migrating south did fairly well; many became successfully established in their new tropical environments and survived to the present. But nearly all lineages that ventured north into colder environments have gone extinct. Today, there are only three survivors: the nine-banded armadillo, the Virginia opossum and the North American porcupine.

New fossils catch evolution in the act

Animals that traveled north had to contend with new environments that bore little resemblance to the ones they left behind. Warm, tropical forests gave way to open grasslands, deserts and cold deciduous forests. For porcupines, this meant coping with brutal winters, fewer resources and coming down from the trees to walk on land. They still haven’t quite gotten the hang of the latter; North American porcupines have a maximum ground speed of about 2 mph.

South American porcupines are equipped with a menacing coat of hollow, overlapping quills, which offer a substantial amount of protection but do little to regulate body temperature. North American porcupines replaced these with a mix of insulating fur and long, needle-like quills that can be raised when they feel threatened. They also had to modify their diet, which changed the shape of their jaw.

“In winter, when their favorite foods are not around, they will bite into tree bark to get at the softer tissue underneath. It’s not great food, but it’s better than nothing,” Vitek said. “We think this type of feeding selected for a particular jaw structure that makes them better at grinding.”

They also lost their prehensile tails. Although North American porcupines still like climbing, it’s not their forte. Museum specimens often show evidence of healed bone fractures, likely caused by falling from trees.

Many of these traits can be observed in fossils. The problem is there aren’t many fossils to go around. According to Vitek, most are either individual teeth or jaw fragments, and researchers often lump them in with South American porcupines. Those that are considered to belong to the North American group lack the critical features that would provide paleontologists with clues to how they evolved.

So when Florida Museum paleontologist Art Poyer found an exquisitely preserved porcupine skeleton in a Florida limestone quarry, they were well aware of its significance.

“When they first brought it in, I was amazed,” said Bloch, senior author of the study. “It is so rare to get fossil skeletons like this with not only a skull and jaws, but many associated bones from the rest of the body. It allows for a much more complete picture of how this extinct mammal would have interacted with its environment. Right away we noticed that it was different from modern North American porcupines in having a specialized tail for grasping branches.”

By comparing the fossil skeleton with bones from modern porcupines, Bloch and Vitek were confident they could determine its identity. But the amount of work this would require was more than one person could do on their own in a short amount of time. So they co-created a paleontology college course, in which the only assignment for the entire semester was studying porcupine bones.

“It’s the kind of thing that could only be taught at a place like the Florida Museum, where you have both collections and enough students to study them,” Vitek said. “We focused on details of the jaw, limbs, feet and tails. It required a very detailed series of comparisons that you might not even notice on the first pass.”

The results were surprising. The fossil lacked the reinforced bark-gnawing jaws and possessed a prehensile tail, making it appear more closely related to South American porcupines. But, Vitek said, other traits bore a stronger similarity to North American porcupines, including the shape of the middle ear bone as well as the shapes of the lower front and back teeth.

With all the data combined, analyses consistently provided the same answer. The fossils belonged to an extinct species of North American porcupine, meaning this group has a long history that likely began before the Isthmus of Panama had formed. But questions remain as to how many species once existed in this group or why they went extinct.

“One thing that isn’t resolved by our study is whether these extinct species are direct ancestors of the North American porcupine that is alive today,” Vitek said. “It’s also possible porcupines got into temperate regions twice, once along the Gulf Coast and once out west. We’re not there yet.”

Jennifer Hoeflich, Isaac Magallanes, Sean Moran, Rachel Narducci, Victor Perez, Jeanette Pirlo, Mitchell Riegler, Molly Selba, María Vallejo-Pareja, Michael Ziegler, Michael Granatosky and Richard Hulbert of the Florida Museum of Natural History are also authors on the paper.



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

New understanding of fly behavior has potential application in robotics, public safety

Published

on

By

Florida fossil porcupine solves a prickly dilemma 10-million years in the making


Why do flies buzz around in circles when the air is still? And why does it matter?

In a paper published online July 26, 2024 by the scientific journal Current Biology, University of Nevada, Reno Assistant Professor Floris van Breugel and Postdoctoral Researcher S. David Stupski respond to this up-until-now unanswered question. And that answer could hold a key to public safety — specifically, how to better train robotic systems to track chemical leaks.

“We don’t currently have robotic systems to track odor or chemical plumes,” van Breugel said. “We don’t know how to efficiently find the source of a wind-borne chemical. But insects are remarkably good at tracking chemical plumes, and if we really understood how they do it, maybe we could train inexpensive drones to use a similar process to find the source of chemicals and chemical leaks.”

A fundamental challenge in understanding how insects track chemical plumes — basically, how does the fly find the banana in your kitchen? — is that wind and odors can’t be independently manipulated.

To address this challenge, van Breugel and Stupski used a new approach that makes it possible to remotely control neurons — specifically the “smell” neurons — on the antennae of flying fruit flies by genetically introducing light-sensitive proteins, an approach called optogenetics. These experiments, part of a $450,000 project funded through the Air Force Office of Scientific Research, made it possible to give flies identical virtual smell experiences in different wind conditions.

What van Breugel and Stupski wanted to know: how do flies find an odor when there’s no wind to carry it? This is, after all, likely the wind experience of a fly looking for a banana in your kitchen. The answer is in the Current Biology article, “Wind Gates Olfaction Driven Search States in Free Flight.” The print version will appear in the Sept. 9 issue.

Flies use environmental cues to detect and respond to air currents and wind direction to find their food sources, according to van Breugel. In the presence of wind, those cues trigger an automatic “cast and surge” behavior, in which the fly surges into the wind after encountering a chemical plume (indicating food) and then casts — moves side to side — when it loses the scent. Cast-and-surge behavior long has been understood by scientists but, according to van Breugel, it was fundamentally unknown how insects searched for a scent in still air.

Through their work, van Breugel and Stupski uncovered another automatic behavior, sink and circle, which involves lowering altitude and repetitive, rapid turns in a consistent direction. Flies perform this innate movement consistently and repetitively, even more so than cast-and-surge behavior.

According to van Breugel, the most exciting aspect of this discovery is that it shows flying flies are clearly able to assess the conditions of the wind — its presence, and direction — before deploying a strategy that works well under these conditions. The fact that they can do this is actually quite surprising — can you tell if there is a gentle breeze if you stick your head out of the window of a moving car? Flies aren’t just reacting to an odor with the same preprogrammed response every time like a simple robot, they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.

So, the next time you try to swat a fly in your home, consider the fact that flies might actually be a little more aware of some of their natural surroundings than you are. And maybe just open a window to let it out.



Source link

Continue Reading

TOP SCEINCE

New drug shows promise in clearing HIV from brain

Published

on

By

Florida fossil porcupine solves a prickly dilemma 10-million years in the making


An experimental drug originally developed to treat cancer may help clear HIV from infected cells in the brain, according to a new Tulane University study.

For the first time, researchers at Tulane National Primate Research Center found that a cancer drug significantly reduced levels of SIV, the nonhuman primate equivalent of HIV, in the brain by targeting and depleting certain immune cells that harbor the virus.

Published in the journal Brain, this discovery marks a significant step toward eliminating HIV from hard-to-reach reservoirs where the virus evades otherwise effective treatment.

“This research is an important step in tackling brain-related issues caused by HIV, which still affect people even when they are on effective HIV medication,” said lead study author Woong-Ki Kim, PhD, associate director for research at Tulane National Primate Research Center. “By specifically targeting the infected cells in the brain, we may be able to clear the virus from these hidden areas, which has been a major challenge in HIV treatment.”

Antiretroviral therapy (ART) is an essential component of successful HIV treatment, maintaining the virus at undetectable levels in the blood and transforming HIV from a terminal illness into a manageable condition. However, ART does not completely eradicate HIV, necessitating lifelong treatment. The virus persists in “viral reservoirs” in the brain, liver, and lymph nodes, where it remains out of reach of ART.

The brain has been a particularly challenging area for treatment due to the blood-brain barrier — a protective membrane that shields it from harmful substances but also blocks treatments, allowing the virus to persist. In addition, cells in the brain known as macrophages are extremely long-lived, making them difficult to eradicate once they become infected.

Infection of macrophages is thought to contribute to neurocognitive dysfunction, experienced by nearly half of those living with HIV. Eradicating the virus from the brain is critical for comprehensive HIV treatment and could significantly improve the quality of life for those with HIV-related neurocognitive problems.

Researchers focused on macrophages, a type of white blood cell that harbors HIV in the brain. By using a small molecule inhibitor to block a receptor that increases in HIV-infected macrophages, the team successfully reduced the viral load in the brain. This approach essentially cleared the virus from brain tissue, providing a potential new treatment avenue for HIV.

The small molecule inhibitor used, BLZ945, has previously been studied for therapeutic use in amyotrophic lateral sclerosis (ALS) and brain cancer, but never before in the context of clearing HIV from the brain.

The study, which took place at the Tulane National Primate Research Center, utilized three groups to model human HIV infection and treatment: an untreated control group, and two groups treated with either a low or high dose of the small molecule inhibitor for 30 days. The high-dose treatment lead to a notable reduction in cells expressing HIV receptor sites, as well as a 95-99% decrease in viral DNA loads in the brain .

In addition to reducing viral loads, the treatment did not significantly impact microglia, the brain’s resident immune cells, which are essential for maintaining a healthy neuroimmune environment. It also did not show signs of liver toxicity at the doses tested.

The next step for the research team is to test this therapy in conjunction with ART to assess its efficacy in a combined treatment approach. This could pave the way for more comprehensive strategies to eradicate HIV from the body entirely.

This research was funded by the National Institutes of Health, including grants from the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke, and was supported with resources from the Tulane National Primate Research Center base grant of the National Institutes of Health, P51 OD011104.



Source link

Continue Reading

TOP SCEINCE

Chemical analyses find hidden elements from renaissance astronomer Tycho Brahe’s alchemy laboratory

Published

on

By

Florida fossil porcupine solves a prickly dilemma 10-million years in the making


In the Middle Ages, alchemists were notoriously secretive and didn’t share their knowledge with others. Danish Tycho Brahe was no exception. Consequently, we don’t know precisely what he did in the alchemical laboratory located beneath his combined residence and observatory, Uraniborg, on the now Swedish island of Ven.

Only a few of his alchemical recipes have survived, and today, there are very few remnants of his laboratory. Uraniborg was demolished after his death in 1601, and the building materials were scattered for reuse.

However, during an excavation in 1988-1990, some pottery and glass shards were found in Uraniborg’s old garden. These shards were believed to originate from the basement’s alchemical laboratory. Five of these shards — four glass and one ceramic — have now undergone chemical analyses to determine which elements the original glass and ceramic containers came into contact with.

The chemical analyses were conducted by Professor Emeritus and expert in archaeometry, Kaare Lund Rasmussen from the Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark. Senior researcher and museum curator Poul Grinder-Hansen from the National Museum of Denmark oversaw the insertion of the analyses into historical context.

Enriched levels of trace elements were found on four of them, while one glass shard showed no specific enrichments. The study has been published in the journal Heritage Science.

“Most intriguing are the elements found in higher concentrations than expected — indicating enrichment and providing insight into the substances used in Tycho Brahe’s alchemical laboratory,” said Kaare Lund Rasmussen.

The enriched elements are nickel, copper, zinc, tin, antimony, tungsten, gold, mercury, and lead, and they have been found on either the inside or outside of the shards.

Most of them are not surprising for an alchemist’s laboratory. Gold and mercury were — at least among the upper echelons of society — commonly known and used against a wide range of diseases.

“But tungsten is very mysterious. Tungsten had not even been described at that time, so what should we infer from its presence on a shard from Tycho Brahe’s alchemy workshop?,” said Kaare Lund Rasmussen.

Tungsten was first described and produced in pure form more than 180 years later by the Swedish chemist Carl Wilhelm Scheele. Tungsten occurs naturally in certain minerals, and perhaps the element found its way to Tycho Brahe’s laboratory through one of these minerals. In the laboratory, the mineral might have undergone some processing that separated the tungsten, without Tycho Brahe ever realizing it.

However, there is also another possibility that Professor Kaare Lund Rasmussen emphasizes has no evidence whatsoever — but which could be plausible.

Already in the first half of the 1500s, the German mineralogist Georgius Agricola described something strange in tin ore from Saxony, which caused problems when he tried to smelt tin. Agricola called this strange substance in the tin ore “Wolfram” (German for Wolf’s froth, later renamed to tungsten in English).

“Maybe Tycho Brahe had heard about this and thus knew of tungsten’s existence. But this is not something we know or can say based on the analyses I have done. It is merely a possible theoretical explanation for why we find tungsten in the samples,” said Kaare Lund Rasmussen.

Tycho Brahe belonged to the branch of alchemists who, inspired by the German physician Paracelsus, tried to develop medicine for various diseases of the time: plague, syphilis, leprosy, fever, stomach aches, etc. But he distanced himself from the branch that tried to create gold from less valuable minerals and metals.

In line with the other medical alchemists of the time, he kept his recipes close to his chest and shared them only with a few selected individuals, such as his patron, Emperor Rudolph II, who allegedly received Tycho Brahe’s prescriptions for plague medicine.

We know that Tycho Brahe’s plague medicine was complicated to produce. It contained theriac, which was one of the standard remedies for almost everything at the time and could have up to 60 ingredients, including snake flesh and opium. It also contained copper or iron vitriol (sulphates), various oils, and herbs.

After various filtrations and distillations, the first of Brahe’s three recipes against plague was obtained. This could be made even more potent by adding tinctures of, for example, coral, sapphires, hyacinths, or potable gold.

“It may seem strange that Tycho Brahe was involved in both astronomy and alchemy, but when one understands his worldview, it makes sense. He believed that there were obvious connections between the heavenly bodies, earthly substances, and the body’s organs. Thus, the Sun, gold, and the heart were connected, and the same applied to the Moon, silver, and the brain; Jupiter, tin, and the liver; Venus, copper, and the kidneys; Saturn, lead, and the spleen; Mars, iron, and the gallbladder; and Mercury, mercury, and the lungs. Minerals and gemstones could also be linked to this system, so emeralds, for example, belonged to Mercury,” explained Poul Grinder-Hansen.

Kaare Lund Rasmussen has previously analyzed hair and bones from Tycho Brahe and found, among other elements, gold. This could indicate that Tycho Brahe himself had taken medicine that contained potable gold.



Source link

Continue Reading

Trending