TOP SCEINCE
How do you make a robot smarter? Program it to know what it doesn’t know

Modern robots know how to sense their environment and respond to language, but what they don’t know is often more important than what they do know. Teaching robots to ask for help is key to making them safer and more efficient.
Because tasks are typically more complex than a simple “pick up a bowl” command, the engineers use large language models (LLMs) — the technology behind tools such as ChatGPT — to gauge uncertainty in complex environments. LLMs are bringing robots powerful capabilities to follow human language, but LLM outputs are still frequently unreliable, said Anirudha Majumdar, an assistant professor of mechanical and aerospace engineering at Princeton and the senior author of a study outlining the new method.
“Blindly following plans generated by an LLM could cause robots to act in an unsafe or untrustworthy manner, and so we need our LLM-based robots to know when they don’t know,” said Majumdar.
The system also allows a robot’s user to set a target degree of success, which is tied to a particular uncertainty threshold that will lead a robot to ask for help. For example, a user would set a surgical robot to have a much lower error tolerance than a robot that’s cleaning up a living room.
“We want the robot to ask for enough help such that we reach the level of success that the user wants. But meanwhile, we want to minimize the overall amount of help that the robot needs,” said Allen Ren, a graduate student in mechanical and aerospace engineering at Princeton and the study’s lead author. Ren received a best student paper award for his Nov. 8 presentation at the Conference on Robot Learning in Atlanta. The new method produces high accuracy while reducing the amount of help required by a robot compared to other methods of tackling this issue.
The researchers tested their method on a simulated robotic arm and on two types of robots at Google facilities in New York City and Mountain View, California, where Ren was working as a student research intern. One set of hardware experiments used a tabletop robotic arm tasked with sorting a set of toy food items into two different categories; a setup with a left and right arm added an additional layer of ambiguity.
The most complex experiments involved a robotic arm mounted on a wheeled platform and placed in an office kitchen with a microwave and a set of recycling, compost and trash bins. In one example, a human asks the robot to “place the bowl in the microwave,” but there are two bowls on the counter — a metal one and a plastic one.
The robot’s LLM-based planner generates four possible actions to carry out based on this instruction, like multiple-choice answers, and each option is assigned a probability. Using a statistical approach called conformal prediction and a user-specified guaranteed success rate, the researchers designed their algorithm to trigger a request for human help when the options meet a certain probability threshold. In this case, the top two options — place the plastic bowl in the microwave or place the metal bowl in the microwave — meet this threshold, and the robot asks the human which bowl to place in the microwave.
In another example, a person tells the robot, “There is an apple and a dirty sponge … It is rotten. Can you dispose of it?” This does not trigger a question from the robot, since the action “put the apple in the compost” has a sufficiently higher probability of being correct than any other option.
“Using the technique of conformal prediction, which quantifies the language model’s uncertainty in a more rigorous way than prior methods, allows us to get to a higher level of success” while minimizing the frequency of triggering help, said the study’s senior author Anirudha Majumdar, an assistant professor of mechanical and aerospace engineering at Princeton.
Robots’ physical limitations often give designers insights not readily available from abstract systems. Large language models “might talk their way out of a conversation, but they can’t skip gravity,” said coauthor Andy Zeng, a research scientist at Google DeepMind. “I’m always keen on seeing what we can do on robots first, because it often sheds light on the core challenges behind building generally intelligent machines.”
Ren and Majumdar began collaborating with Zeng after he gave a talk as part of the Princeton Robotics Seminar series, said Majumdar. Zeng, who earned a computer science Ph.D. from Princeton in 2019, outlined Google’s efforts in using LLMs for robotics, and brought up some open challenges. Ren’s enthusiasm for the problem of calibrating the level of help a robot should ask for led to his internship and the creation of the new method.
“We enjoyed being able to leverage the scale that Google has” in terms of access to large language models and different hardware platforms, said Majumdar.
Ren is now extending this work to problems of active perception for robots: For instance, a robot may need to use predictions to determine the location of a television, table or chair within a house, when the robot itself is in a different part of the house. This requires a planner based on a model that combines vision and language information, bringing up a new set of challenges in estimating uncertainty and determining when to trigger help, said Ren.
TOP SCEINCE
Early dark energy could resolve cosmology’s two biggest puzzles

A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.
Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.
Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.
The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.
“You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”
The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.
Big city lights
Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.
But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.
“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”
For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.
Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.
Galaxy skeleton
The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.
“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”
The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.
Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.
The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.
“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”
“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”
“We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”
This research was supported, in part, by NASA and the National Science Foundation.
TOP SCEINCE
Plant-derived secondary organic aerosols can act as mediators of plant-plant interactions

A new study published in Science reveals that plant-derived secondary organic aerosols (SOAs) can act as mediators of plant-plant interactions. This research was conducted through the cooperation of chemical ecologists, plant ecophysiologists and atmospheric physicists at the University of Eastern Finland.
The study showed that Scots pine seedlings, when damaged by large pine weevils, release VOCs that activate defences in nearby plants of the same species. Interestingly, the biological activity persisted after VOCs were oxidized to form SOAs. The results indicated that the elemental composition and quantity of SOAs likely determines their biological functions.
“A key novelty of the study is the finding that plants adopt subtly different defence strategies when receiving signals as VOCs or as SOAs, yet they exhibit similar degrees of resistance to herbivore feeding,” said Professor James Blande, head of the Environmental Ecology Research Group. This observation opens up the possibility that plants have sophisticated sensing systems that enable them to tailor their defences to information derived from different types of chemical cue.
“Considering the formation rate of SOAs from their precursor VOCs, their longer lifetime compared to VOCs, and the atmospheric air mass transport, we expect that the ecologically effective distance for interactions mediated by SOAs is longer than that for plant interactions mediated by VOCs,” said Professor Annele Virtanen, head of the Aerosol Physics Research Group. This could be interpreted as plants being able to detect cues representing close versus distant threats from herbivores.
The study is expected to open up a whole new complex research area to environmental ecologists and their collaborators, which could lead to new insights on the chemical cues structuring interactions between plants.
TOP SCEINCE
Folded or cut, this lithium-sulfur battery keeps going

Most rechargeable batteries that power portable devices, such as toys, handheld vacuums and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
The team coated iron sulfide cathodes in different polymers and found in initial electrochemical performance tests that polyacrylic acid (PAA) performed best, retaining the electrode’s discharge capacity after 300 charge-discharge cycles. Next, the researchers incorporated a PAA-coated iron sulfide cathode into a prototype battery design, which also included a carbonate-based electrolyte, a lithium metal foil as an ion source, and a graphite-based anode. They produced and then tested both pouch cell and coin cell battery prototypes.
After more than 100 charge-discharge cycles, Wang and colleagues observed no substantial capacity decay in the pouch cell. Additional experiments showed that the pouch cell still worked after being folded and cut in half. The coin cell retained 72% of its capacity after 300 charge-discharge cycles. They next applied the polymer coating to cathodes made from other metals, creating lithium-molybdenum and lithium-vanadium batteries. These cells also had stable capacity over 300 charge-discharge cycles. Overall, the results indicate that coated cathodes could produce not only safer Li-S batteries with long lifespans, but also efficient batteries with other metal sulfides, according to Wang’s team.
The authors acknowledge funding from the National Natural Science Foundation of China; the Natural Science Foundation of Sichuan, China; and the Beijing National Laboratory for Condensed Matter Physics.
-
TOP SCEINCE8 months ago
Searching old stem cells that stay young forever
-
Solar Energy4 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
Indian Defense4 years ago
Configuration For 5th-Generation Advanced Medium Combat Aircraft (AMCA) Completed; TEJAS MK-2 Steel-Cutting Soon
-
world news6 months ago
Sirens trigger across central Israel following rocket barrage targeting Tel Aviv Iron Dome battery
-
world news6 months ago
Hezbollah’s gold mine catches fire: Nasrallah’s bunker under hospital held half billion dollars
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
Indian Defense4 years ago
Israeli Radar Company Signs MoU To Cooperate With India’s Alpha Design Technologies
-
Gadgets4 years ago
Apple Accused of Slowing Down iPhones After Recent iOS Updates